KMi Seminars
An Ontological Formalization of the Planning Task
This event took place on Monday 25 October 2004 at 12:30

 
Dnyanesh Rajpathak

In this paper we propose a generic task ontology, which formalizes the space of planning problems. Although planning is one of the oldest researched areas in Artificial Intelligence and attempts have been made in the past at developing task ontologies for planning, these formalizations suffer from serious limitations: they do not exhibit the required level of formalization and precision and they usually fail to include some of the key concepts required for specifying planning problems. In contrast with earlier proposals, our task ontology formalizes the nature of the planning task independently of any planning paradigm, specific domains, or applications and provides a fine-grained, precise and comprehensive characterization of the space of planning problems. Finally, in addition to producing a formal specification we have also operationalized the ontology into a set of executable definitions, which provide a concrete reusable resource for knowledge acquisition and system development in planning applications.

 
KMi Seminars Event | SSSW 2013, The 10th Summer School on Ontology Engineering and the Semantic Web Journal | 25 years of knowledge acquisition
 

Social Software is...


Social Software
Social Software can be thought of as "software which extends, or derives added value from, human social behaviour - message boards, musical taste-sharing, photo-sharing, instant messaging, mailing lists, social networking."

Interacting with other people not only forms the core of human social and psychological experience, but also lies at the centre of what makes the internet such a rich, powerful and exciting collection of knowledge media. We are especially interested in what happens when such interactions take place on a very large scale -- not only because we work regularly with tens of thousands of distance learners at the Open University, but also because it is evident that being part of a crowd in real life possesses a certain 'buzz' of its own, and poses a natural challenge. Different nuances emerge in different user contexts, so we choose to investigate the contexts of work, learning and play to better understand the trade-offs involved in designing effective large-scale social software for multiple purposes.