


Introduction to the CASheW-s Project

� Our main objective is to develop a more generic 
approach to Web-Service composition.

� Therefore we are investigating the use of a timed 
process calculus to provide compositional 
behavioural semantics for workflows.

� The culmination of this will be a workflow 
engine,which will first be able to orchestrate 
OWL-S workflows.

� In this presentation we look at the operational 
semantics for OWL-S, and our approach to 
building them.



CaSHew-NUtS

� A conservative extension of the timed process 
calculus CaSE, which itself is a conservative 
extension of Milner's CCS.

� Extends CCS with the notion of abstract clocks, 
which facilitate multi-party synchronization.

� In CaSE, clocks are bound by maximal progress, 
meaning silent actions always take precedence 
over clock ticks.

� CaSHew-NUtS extends this concept with the 
possibility of clocks which do not exhibit 
maximal progress.



CASheW-s Architecture

CASHeW-s Editor

Typecheck Workflow

Eva
lu

at
e Fu

nc
tio

ns

Publish Workflow λ
Haskell Evaluator Service

X
S
D

T
y
p
e

D
B

SOAP Endpoints

OWL-S

Publishing

Gateway

CASheW-s Engine

p1 p2 p3

Language

extensions

Import

types

Compiled Workflow Processes





CASheW-s Syntax

� Problems with OWL-S Syntax

� Incoming dataflow tied to Performance restricting 
further composition.

� Fine for persistence/communication, but doesn't 
represent the composition of a system.

� Uncomfortable notion of Produce tied to dummy 
variable TheParentPerform.

� CASheW-s syntax

� More open to composition.

� Allows compositional translation from OWL-S syntax.







Orchestration Channels

� r is the ready to execute channel, which a process 
uses to indicate that it has no further execution pre-
conditions. (Something the informal semantics rely 
on, but no-one else has formalised).

� e is the permission to execute channel, which a 
process must receive input on before it can begin 
executing.

� t signifies the token, which signifies permission to 
execute for each of the process's child 
performances (in a similar fashion to a token ring 
network). Different token passing games facilitate 
performance serialization.



�
�

�





��� �� � � �	 
 �� � � 
 � � �� �� �	 ��� � � � 
 � �

(((σm)))Sequence

Sched1

Sched2

Sched3

ri

ei

e

(((σn1)))

(((σn2)))

(((σn3)))

r

t

ti

t

ti

r

e

e

r

Consumer

Producer

a

c

CProcess

cn1 dn1

a
n1

0

p2
Value

Data

n2 a
n2

0

cn2

VC p3

a
n3

2
a

n3

1

p1



OWL-S Process Semantics

Where � G is a Consume List� H is a Produce List

� m is a process name� p is a process� A is a set of inputs� C is a set of outputs

[[AtomicProcess m P]]A
C

= m[[P]]A
C

[[CompositeProcess m P G H]]A
C

=

(m[[P]]A
m

Cm | [[G]]A
∅
| [[H]]∅

C
) \ Am ∪ Cm/{σc | c ∈ C}



Example Atomic Process Semantics
[[AnAtomicProcess]]

{a1 ,a2}
{c} =

µX. < a1, a2 > .r.e.τ.c.X

a1

a2

r

eτc

a2

a1



Consume Semantics

bn
j

a

� Wires like Consume, patiently wait for input and then insistently output.

� Consume pulls an input which is required to run a 
process.

[[Consume a n b j]]
{a}
∅ = µX.a.bn

j .X



Produce Semantics

c

d
n

� Produce pushes an output which has been 
produced by a process.

� Within CASheW-s, Produce is not a type of performance, rather a type of 
connection

[[Produce c n d]]∅{c} = µX.dn.c.X



Connection Semantics

� Connect shunts the output of one performance in a 
composite process, to the input of another. 

a
o
j

c
n

[[Connect n c o a j]] = µX.cn.ao
j .X



Composite Process Semantics

� Defined in terms of a top-level Governor process, 
and in the case of unbounded child-performances 
an inductively defined context-based composition 
semantics, which pair a Scheduler with the 
performance semantics.

� Defined in terms of a top-level Governor process, 
and in the case of unbounded child-performances 
an inductively defined context-based composition 
semantics, which pair a Scheduler with the 
performance semantics.

m[[Sequence Q]]AC =m [[seqQ]]AC/σm \ t

m[[SplitJoin Q]]AC = (m[[sjQ]]AC | µX.σm.r.e.σm.σm.X)//σm

m[[AnyOrder Q]]AC =m [[anyQ]]AC/σm \ t



Sequence Semantics
Base Case

ri

σ
m

r e ei σ
n

σ
m

σ
m t

σ
m

σ
m

σ
m

σ
m

m[[seq
Perform n p U V ]]AC =
(n[[Perform n p U V ]]A

n

Cn [e 7→ ei, r 7→ ri] |

µX.ri.r.e.ei.σn
σmbt.σm.Xcσm(X))/σn \ {ri, ei}



Sequential Composition Semantics 
General Case

ri ei σ
n

σ
m

σ
m t

σ
m

σ
m

σ
m

t
i

m[[seq(Q);Perform n p U V ]]A
Q
∪An

CQ∪Cn =

(n[[Perform n p U V ]]A
n

Cn [e 7→ ei, r 7→ ri] | m[[seqQ]]A
Q

CQ [t 7→ ti] |

µX.ti.ri.ei.σn
σmbt.σm.Xcσm(X))/σn \ {ri, ei}



AnyOrder Composition Semantics
Base Case

ri ei σ
n

σ
m

σ
m t

σ
m

σ
m

σ
m

er

t

m[[any
Perform n p U V ]]AC =

(m[[any
Perform n p U V ]]AC [e 7→ ei, r 7→ ri] |

µX.ri
σm .(r.e.ei.σn

σm .bt.σm.Xcσm(X) +

t.ei.σn
σm .bt.σm.Xcσm(X))) \ {ei, ri}/σn



AnyOrder Composition Semantics
General Case

� We use this induction in all cases to define the 
semantics for the general case where all 
performances are handled in the same way.

m[[any(Q);Perform n p U V ]]A
Q
∪An

CQ∪Cn =
m[[any

Perform n p U V ]]A
n

Cn | m[[anyQ]]A
Q

CQ



Split/SplitJoin Process Semantics
(Governor)

σ
m

r e

σ
m

σ
m

m[[SplitJoin Q]]AC = (m[[sjQ]]AC | µX.σm.r.e.σm.σm.X)//σm

m[[Split Q]]AC = (m[[splitQ]]AC | µX.σm.r.e.σm.σm.X)//σm



SplitJoin Composition Semantics

σ
m

σ
m

σ
m

σ
n

r
i

σ
m

e
i

σ
m

σ
m

m[[sj
Perform n p U V ]]AC =
(m[[sj

Perform n p U V ]]AC [e 7→ ei, r 7→ ri] |

µX.ri
σm .σm.σm.ei.σn

σm .σm.X) \ {ei, ri}/σn



Split Composition Semantics

σ
m

σ
m

σ
m

r
i

σ
m

e
i

σ
m

σ
m

� Split is our primary motivation for clock ticks not bound by maximal progress

m[[split
Perform n p U V ]]AC =

(m[[split
Perform n p U V ]]AC [e 7→ ei, r 7→ ri] |

µX.ri
σm .σm.σm.ei

σm .σm.X) \ {ei, ri}/σn



Next Step : Haskell Implementation

� We already have an implementation of the 
CaSHew-NUtS Process Calculus in Haskell, the 
next step is to define semantics for mapping 
OWL-S to this representation.

� The Haskell implementation allows the calculus 
to be grounded in IO operations, enabling Web-
Service invocation.

� This can then be combined with our HAIFA 
interoperability kit to enable orchestration.



Conclusion

� We have presented a timed process calculus 
semantics for OWL-S, which we will shortly be 
using to build an orchestration engine.

� We predict that this approach to providing 
operational semantics can be applied to other 
work-flow languages, allowing a single engine to 
be able handle heterogeneous orchestration.

� All of this will be combined with the safety of 
Haskell, to build reliable, predictable workflows.





More to come soon...



Basic CCS Rules

Act
α.E

α

→ E
Sum1

E
α

→ E
′

E + F
α

→ E′

Sum2
F

α

→ F
′

E + F
α

→ F ′

Com1
E

α

→ E
′

E | F
α

→ E′ | F
Com2

F
α

→ F
′

E | F
α

→ E | F ′

Com3
E

a

→ E′, F
a

→ F ′

E | F
τ

→ E′ | F ′

Res
E

γ

→ E′

E \ a
γ

→ E′ \ a
γ /∈ {a, a}

Rec
E

γ

→ E′

µX.E
γ

→ E′{µX.E/X}












