
Title:

IRS-III: A Broker-based Approach to Semantic Web
Services

Authors:

John Domingue, Liliana Cabral, Stefania Galizia, Vlad Tanasescu,
Alessio Gugliotta, Barry Norton, and Carlos Pedrinaci

Address:

Knowledge Media Institute
Open University
Milton Keynes, MK7 6AA, UK

Fax number: +44 (0) 1908 653169

E-Mails:
{ j.b.domingue, l.s.cabral, s.galizia, v.tanasescu a.gugliotta, b.j.norton,
c.pedrinaci}@open.ac.uk

 1

IRS-III: A Broker-based Approach to
Semantic Web Services
JOHN DOMINGUE, LILIANA CABRAL, STEFANIA GALIZIA,
VLAD TANASESCU, ALESSIO GUGLIOTTA, BARRY NORTON, and
CARLOS PEDRINACI
Knowledge Media Institute, The Open University

__

A factor limiting the take up of Web services is that all tasks associated with the creation of an application, for
example, finding, composing, and resolving mismatches between Web services have to be carried out by a
software developer. Semantic Web services is a combination of semantic Web and Web service technologies
that promise to alleviate these problems. In this paper we describe IRS-III, a framework for creating and
executing semantic Web services, which takes a semantic broker based approach to mediating between service
requesters and service providers. We describe the overall approach and the components of IRS-III from an
ontological and architectural viewpoint. We then illustrate our approach through an application in the
eGovernment domain.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: Online
Information Services—Web-based services I.2.5 [Artificial Intelligence] - Programming
Languages and Software
General Terms: Design, Languages, Management
Additional Key Words and Phrases: Semantic Web, Semantic Web Services, Ontology, WSMO, IRS-III
__

1. INTRODUCTION

A factor limiting the take up of Web services is that all tasks associated with the

creation of an application, for example, finding, composing, and resolving

mismatches between Web services have to be carried out by a software

developer. Semantic Web services is a combination of semantic Web and Web

service technologies which promise to alleviate these problems.

From a business perspective a key feature of Web services is that they can be

viewed as implementations of business services. Commercial organizations can

thus use Web services technology to expose elements of their business processes.

For example, Google [Google, 2005] has a Web service interface to its search

engine and Amazon allows software developers to directly access their

technology platform and product data [Amazon, 2006].

From an information technology viewpoint the two important features of Web

Services are that: a) they are accessible over the Internet using standard XML-

based protocols; and, b) the interface of the Web service is independent of its

 2

actual implementation. The first feature gives Web services high availability

whereas the second feature facilitates reusability and interoperability.

Three main technologies are currently used to implement Web services:

SOAP [SOAP, 2003], WSDL [WSDL, 2001] and UDDI [UDDI, 2003]. SOAP is

an XML based, stateless, one-way message exchange protocol for interacting

with Web services over HTTP. WSDL is an XML based format for describing

Web services as collections of network endpoints or ports. UDDI is a standard

for defining a registry, which allows clients to find Web services through

descriptions of business entities, business services or via predefined business

categories.

A key problem with the above technologies is that they are purely syntactic.

They thus rely on software developers to understand the intended meaning of the

descriptions and to carry out the activities related to Web service usage. Semantic

Web services (SWS) research aims to automate the development of Web service

based applications through semantic Web technology. By providing formal

descriptions with well defined semantics we facilitate the machine interpretation

of Web service descriptions.

The Semantic Web [Berners-Lee et al., 2001] is an extension of the current

Web, where documents incorporate machine executable meaning. The overall

semantic Web vision is that one day it will be possible to delegate non-trivial

tasks, such as booking a holiday, to software programs able to locate and reason

over relevant heterogeneous online resources. One of the key building blocks for

the semantic Web is the notion of an ontology [Gruber, 1993]. An ontology is an

explicit formal shared conceptualization of a domain of discourse. More

specifically, an ontology facilitates semantic interoperability by capturing the

main concepts and relations that a community shares over a particular domain.

In this paper we describe IRS-III (Internet Reasoning Service), a framework

for creating and executing semantic Web services, which takes a semantic broker

based approach to mediating between service requesters and service providers

[Cabral et al., 2006; Domingue et al., 2004; Domingue et al., 2005a; Domingue

et al., 2005b; Tanasescu et al. 2007]. More specifically, we have extended the

 3

core epistemological framework of our previous IRS-II framework [Motta et al.,

2003] (see more details in Section 2) and incorporated the Web Services

Modelling Ontology [WSMO, 2007; Fensel et al., 2006] conceptual model (see

more details in Section 4) into the IRS-III framework.

A core design principle for IRS-III is to support capability-based invocation

(we give a full list of our design principles in Section 3). A client sends a request

which captures a desired outcome or goal and, using a set of semantic Web

service descriptions, IRS-III will: a) discover potentially relevant Web services;

b) select the set of Web services which best fit the incoming request; c) mediate

any mismatches at the conceptual level; and d) invoke the selected Web services

whilst adhering to any data, control flow and Web service invocation constraints.

In Sections 4, 5 and 6 we describe the general architecture for IRS-III and

then describe in detail how IRS-III handles: choreography, the interaction rules

for invoking a single Web service; orchestration, the control and data flow for

composite Web services; and, mediation, the resolving of mismatches at the

conceptual level.

Over the past few years we have been using IRS-III to develop SWS

applications in real world contexts within large collaborative national [MIAKT,

2002] and European funded projects [DIP, 2004]. In Section 7 we outline how

SWS based systems can be successfully developed and deployed using IRS-III

and in Section 8 we illustrate our approach through an eGovernment application

we created to support emergency planning. Section 9 discusses the benefits of

our approach. The final two sections of the paper contain an overview of related

work, conclusions and future work.

2 THE IRS PROJECT OVERVIEW

The IRS project has the overall aim of supporting the automated or semi-

automated construction of semantically enhanced systems over the Internet. IRS-

I supported the creation of knowledge intensive systems structured according to

the UPML (Unified Problem-solving Method Development Language)

 4

framework [Fensel and Motta, 2001]; IRS-II [Motta et al., 2003] integrated the

UPML framework with Web service technologies.

The UPML framework partitions knowledge into domain models, task models

and problem solving methods (PSMs), which are connected via bridges. Each

knowledge model type (task, PSM and domain model) is supported by

appropriate ontologies, as follows.

• Domain models - domain models describe the domain of an application (e.g.

vehicles, a medical disease);

• Task models – a generic description of the task to be solved, specifying the

input and output types, the goal to be achieved and pre and post-conditions;

• Problem Solving Methods – a description of the generic reasoning process to

be applied, for example, heuristic classification or propose and revise;

• Bridges – contain mappings between the different model components within

an application.

Within IRS-III we have now extended this framework and incorporated the

WSMO conceptual model, thus generating the new main epistemology entities:

goals, Web services and mediators. Additionally, we provide a set of tools to

support the SWS developer at design time in creating, editing and managing a

library of semantic descriptions as well as publishing and invoking semantic Web

services.

3. PRINCIPLES UNDERLYING IRS-III

The IRS-III design principles listed below outline how a broker based platform

can support the creation and execution of semantic Web services. As such, the

principles take into account knowledge level, operational, and usability criteria.

a. Brokering role – we exploit the benefits of semantic technologies in a

brokering context where IRS-III mediates between a client and a service

provider. We use ontologies to separately capture the client and the provider

context and use reasoning over the client and provider viewpoints to support

interoperability and collaboration.

 5

b. Underpinned by ontological representations - the ever-growing popularity of

the semantic Web is in a large part due to the extensive use of ontologies. By

providing an explicit formal model, ontologies facilitate knowledge sharing

by machines and humans. Within IRS-III we use our own ontology

representation language, OCML [Motta, 1998]. More details on OCML are

provided in Section 4.1.

c. Clean ontological separation of user and Web service contexts - the starting

point of our approach is the representation of client requests. A client will

exist in its own context which should be modelled explicitly as part of the

semantic descriptions. This context will be quite different from that of the

Web service. For example, an end user may request a holiday with a

preference for a certain climate, located near particular cultural artefacts and

amenable to children within a specific age range. The required flights and

hotel booking Web services will be described using concepts such as ‘city’

and ‘available date’. Our view is that distinct ontological structures are

required to describe potential users and Web services.

d. Capability based invocation – a key feature we want to provide based on the

previous principle is the ability to invoke services based on the client request.

In general, clients will not be interested in the details of service functionality

so we support invocation via a desired capability expressed as a WSMO goal.

IRS-III then acts as a broker: finding, composing and invoking appropriate

Web services in order to fulfil the request. This principle supports principle

(a) but of course a semantic broker also requires additional features such as

ontology support, separation of user and provider concerns, and support for

publishing as set out in the other principles in this section.

e. Single representation language – in IRS-III we encode all semantic

descriptions with our single representation language OCML. That is, OCML

is uniformly used for representing service models (including meta-

modelling), rules and logical expressions. This is not the case for several of

the other major SWS initiatives. For example, within the OWL-S approach

[OWL-S, 2006], due the lack of representational power in OWL-DL, the

 6

modeller is free to choose his or her own favourite language for representing

pre and post-conditions. Consequently, language specific reasoners are

required to reason over OWL-S descriptions including pre or post-conditions.

Within the WSMO approach, the WSML family of languages [WSML,

2005] embeds WSMO concepts within the grammar of the language. For

example, the concepts goal, mediator and Web service are defined using

inbuilt keywords. Whilst, reducing the syntax burden for the SWS developer

this design decision restricts the scope and power of WSML as WSMO

concepts are not available as first class citizens. A single representation

language provides a number of benefits for IRS-III. Firstly, we can use

WSMO concepts in other ontologies and we can subclass WSMO concepts.

For example, one can define new types of goals for a particular domain or

application or one can define that the type of an attribute is a goal. The

second benefit is that we can utilise the principle of self-hosting1, that is, we

can define internal components of IRS-III in OCML using our service

ontology. We expand on this in later sections.

f. Ease of use – creating SWS based applications is a very complex task and it

is thus essential that the support platform is as easy to use as possible for

SWS application developers. Within IRS-III, for example, the browser hides

some of the complexity of the underlying service ontology by bundling up

related class definitions into a single tabbed dialog window. While we have

not attempted to measure the ease of use of IRS-III, we have been able to use

IRS-III successfully in a number of tutorials as well as project use cases

involving real users in industrial contexts.

g. Seamless publishing of services - users quite often will have an existing

system functionality, which they would like to be made available as a

service, but have no knowledge of the tools and processes involved in turning

a stand-alone program into a Web service. We therefore created IRS-III so

that it supports ‘one click’ publishing of stand-alone code (currently Java and

1 http://en.wikipedia.org/wiki/Self-hosting

 7

Lisp). We also publish Web services from the given WSDL description or

from the URI (i.e. a HTTP GET request) of a web application.

h. Inspectability - in many parts of the life cycle of any software system, it is

important that developers are able to understand the design and behaviour of

the software being constructed. This is also true for SWS applications. This

principle is concerned with making the semantic descriptions accessible in a

human readable form. In IRS-III, we make the service models available from

libraries and inspectable within a purpose built browsing and editing

environment.

i. Interoperable with SWS frameworks and platforms - one of the main aims for

Web services is to enable the interoperability of programs over the Internet.

A reasonable extension of this is that, as far as possible, SWS frameworks

and platforms also should be interoperable. For this reason, IRS-III has an

OWL-S import mechanism [Hakimpour et al., 2004] and is interoperable

with WSMO implementations (e.g. WSMO Studio (www.wsmostudio.org);

and WSMX - www.wsmx.org) through a common standard API

(http://www.oasis-open.org/committees/semantic-ex).

j. Executable semantic descriptions - the semantic representations should be

executable directly or should be able to be compilable to a runnable

representation. This principle follows on the operational ability of our

underlying language OCML [Motta, 1998] to execute functions, rules and

semantic definitions as part of the reasoning system. This makes IRS-III

partially self-hosting – a number of components are implemented in OCML

using the IRS-III SWS descriptions.

Given that IRS-III and WSMO share the UPML framework as a common

ancestor (including common authors), it is not surprising that a number of

principles are common to both approaches. In particular, principles (b) and (c),

related to the use of ontologies and separating the descriptions of Web service

consumer and Web service provider, are shared.

4. THE IRS-III FRAMEWORK

The IRS-III framework has been designed to fulfil the design principles outlined

in Section 3. In this section we describe in detail the elements of the IRS-III

framework as motivated from the principles. We start with a description of the

IRS-III underlying language and reasoning system. We then describe the IRS-III

service ontology, which includes commonalities and differences with the WSMO

conceptual model. Finally, we describe the main components of the IRS-III

framework including the IRS-III Server, the IRS-III Publishing Platform and a

number of clients, according to Figure 1.

Figure 1. The IRS-III Framework.

4.1. IRS-III Representation Language and Reasoning

As mentioned earlier IRS-III uses OCML [Motta, 1999] for internal

representation. The OCML language combines a frame system with a tightly

integrated forward and backward chaining rule system and includes constructs

for defining: classes, instances, relations, functions, procedures and rules.

Additionally, procedures and functions can be attached to Lisp code. This feature

allows ontologies related to service descriptions to be attached to our service

invocation mechanism thus enabling inferred values to reflect the state of a

deployed service (e.g. to retrieve a current exchange rate). The constituent

constructs of OCML are tightly integrated. Classes are unary relations and class

 8

 9

attributes are binary relations. Moreover, relations in OCML can be defined

using forward or backward chaining rules. The operational semantics of the

forward chaining system are equivalent to OPS5 [Forgy, 1981] and the backward

chaining rule system has equivalent operational semantics to Prolog [Clocksin

and Mellish, 1984]. OCML has been used in a wide variety of projects covering,

for example: knowledge management [Domingue and Motta, 2000], online

shopping [Domingue et al., 2003] and semantic Web browsing [Dzbor et al.,

2007].

The OCML environment incorporates a reasoner, which is central to the IRS-

III server (as can be seen in Figure 2). All the major server components use the

OCML reasoner and are partly defined using the IRS-III service ontology.

OCML contains import/export facilities to RDF(S) [RDF, 2004; RDF Schema,

2004] and import facilities for OWL [OWL, 2004]. The RDF import and export

makes use of a Lisp implementation of Wilbur [Lassila, 2001] and covers all

RDF constructs. We are still testing our OWL import facility but it is currently

powerful enough to seamlessly import the whole of the DOLCE ontology

[Gangemi et al., 2002]. Additionally, the IRS-III API contains a module for

translating between OCML based SWS descriptions and WSML based SWS

descriptions. This module is able to cope with basic concepts, attributes and

instances and future work will investigate the translation of logical expressions.

Details on OCML including the semantics of the interpreter and the OCML proof

system are given in [Motta, 1999].

4.2. The IRS-III Service Ontology

The IRS-III service ontology, as partially shown in appendices I, II and III,

forms the epistemological basis for IRS-III and provides semantic links between

the knowledge level components describing SWS and the conditions related to its

use. These descriptions are interpreted by the OCML reasoner described in

Section 4.1. We describe the commonalities and differences between the service

ontology and WSMO and then describe how the service ontology is used within

IRS-III.

4.2.1 Commonalities between the IRS-III Service Ontology and WSMO

 10

Motivated by design principles (b) and (c), the IRS-III service ontology

contains the following main items, which are also part of the Web Services

Modelling Ontology [WSMO, 2007; Fensel et al., 2007].

• Non-functional properties – these properties are associated with every main

component model and can range from information about the provider such as

the organisation’s legal address, to information about the service such as

category, cost and quality of service, to execution requirements such as

scalability, security or robustness.

• Goal-related information – a goal represents the user perspective of the

required functional capabilities. It includes a description of the requested

Web service capability.

• Web service functional capabilities – represent the provider perspective of

what the service does in terms of inputs, output, pre-conditions and post-

conditions. Pre-conditions and post-conditions are expressed by logical

expressions that constrain the state or the type of inputs and outputs.

• Choreography – specifies how to communicate with a Web service. More on

our choreography can be found in Section 5.2.

• Grounding – associated with the Web service choreography, a grounding

describes how the semantic declarations are associated with a syntactic

specification such as WSDL.

• Orchestration – the orchestration of a Web service specifies the

decomposition of its capability in terms of the functionality of other Web

services. More on our orchestration work can be found in Section 5.3.

• Mediators – a mediator specifies which top elements are connected and

which type of mismatches can be resolved between them. Mediators are

described in Section 6.

4.2.2 Differences between the IRS-III Service Ontology and WSMO

The differences between our ontology and WSMO are strongly influenced by

principles (d), (f) and (h) as described below:

• Meta-classes for the top-level SWS concepts – meta-class definitions for goal,

mediator and Web service have been defined (see Appendix 1). These classes

 11

have a ‘meta-’ extension (e.g. meta-goal) and enable the IRS-III components

to reason over the top-level concepts within the service ontology as first class

entities.

• SWS user definitions as classes – following from the previous item, we

enable users to define the required goals, mediators and Web services as

subclasses of the corresponding WSMO concepts rather than as instances. In

our view a class better captures the concept of a reusable service description

and taxonomic structures can be used to capture the constitution of a

particular domain. For example, goals for booking flights may have sub-

goals for booking European flights and for booking long-haul flights. A

proposal for extending WSMO with goal templates, similar to our goal

classes, has been suggested recently [Stollberg and Norton, 2007].

• SWS invocation contexts as instances – we reserve instances for invocation.

When IRS-III receives a client request, instances of relevant goals, mediators

and Web services are created to capture the current invocation context.

• Explicit input and output role declaration – in the interests of simplifying the

definition of goals and Web services (principle (f)), our ontology

incorporates explicit input and output role declarations. The declared input

and output types are imported from domain ontologies. This feature enables

SWS developers to view goals and Web services as ‘one-shot’ thus

minimising the need to consider complex interaction when appropriate. Some

of the definitions related to input and output roles are contained in

appendices I and II. Section 5.2 describes how IRS-III deals with Web

services which have non trivial communication requirements.

• Orchestration and choreography language – the representation of our

orchestration and choreography, described in Section 5, are defined within

the service ontology.

• Using SWS descriptions for implementing internal components – following

from design principles (b), (e), (f), (h) and (j) we implement several IRS-III

internal components using the service ontology and OCML. Our assumption

is that IRS-III components described through goals, mediators, and Web

 12

services and through ontological concepts and relations are easier to

understand and maintain than if they were implemented purely in a

programming language. A small part of the ontology related to describing

and implementing IRS-III internal components is contained in appendices II

and III.

For illustration purposes, we provide an example of a goal definition below (in

listing 1) as specified in IRS-III, for calculating the exchange rate between two

currencies. The goal has two input roles: has-currency-1 and has-currency-2,

which represent the two currencies for which an exchange rate is required. For

each input role within IRS-III we specify the type of values allowed, which can

be inherited by Web services linked through a wg-mediator. The output, has-

exchange-rate is of type float. The post-condition represented by an anonymous

OCML relation (called a kappa expression) states that the output is the current

exchange rate between the two currencies.

Exchange-rate-goal
 "This goal returns the exchange rate between two currencies."
 Input Role
 has-currency-1 currency "string"
 has-currency-2 currency "string"
 Output Role
 has-exchange-rate float "float"
 Post Condition
 (kappa (goal)
 (== (has-role-value goal has-exchange-rate)
 (the-current-exchange-rate
 (has-role-value goal has-currency-1)
 (has-role-value goal has-currency-2))))

Listing 1. An example goal as specified in IRS-III - the exchange-rate-goal.

4.2.3 Using the Service Ontology

Before we describe the IRS-III server and its components we first highlight

the main ways in which the service ontology is used to implement the core

functionalities.

• Web services are linked to goals via mediators - if a wg-mediator associated

with a Web service has a goal as a source, then this Web service is

considered to solve that goal. An assumption expression can be introduced

 13

for further refining the applicability of the Web service. This feature supports

principle (d).

• GG-mediators provide data-flow between sub-goals – in IRS-III, gg-

mediators are used to link sub-goals within an orchestration and so they also

provide dataflow between the sub-goals.

• Web services can inherit from goals - Web services which are linked to goals

‘inherit’ the goal’s input and output roles. This means that input role

declarations within a Web service are not mandatory and can be used to

either add extra input roles or to change an input role type. A small number

of the relations related to this feature are shown in Appendix II.

• Client choreography – the provider of a Web service must describe the

choreography from the viewpoint of the client. Within WSMO the

choreography expresses a number of constraints which should not be violated

when a deployed service is invoked. Within the IRS-III we evaluate the client

choreography in order to interact with the deployed Web service.

Mediation services are goals – a mediator declares a goal as the mediation

service which can simply be invoked. The required data transformation is

performed by the associated Web service.

4.3 IRS-III Server

As can be seen in Figure 2, the IRS-III Server builds upon an HTTP Server

written in Lisp [Riva and Ramoni, 1996] which has been extended with a SOAP

handler. As mentioned above we aim to make IRS-III self-hosting by

implementing the main components as far as possible using the service ontology

above and OCML (see appendices II and III).

At the heart of the server is the SWS Library, where the semantic descriptions

associated with Web services are stored using our representation language

OCML [Motta, 1998]. The library is structured into domain ontologies and

knowledge models for goals, Web services and mediators as described previously

(see Section 4.2). Typically our applications consist of mediator models

importing from relevant goal and Web service models. Following our design

principle of inspectability (h), all information relevant to a Web service is stored

explicitly within the library.

Figure 2. The IRS-III Server.

Within IRS-III, a Web service is associated with an orchestration and

choreography definitions. Orchestration specifies the control and data flow of a

composite Web service, whereas, choreography specifies how to interact with a

single Web service. The choreography component communicates with an

invocation module able to generate the required messages in a SOAP format. The

functionality of the choreography and orchestration interpreters are described in

sections 5.2 and 5.3 of the paper.

A Mediation Handler provides functionality to interpret mediator descriptions

including running data mediation rules, invoking mediation services and

connecting goals and Web services. The mediation component is described in

more detail in Section 6.

4.4 The IRS-III Publishing Platforms

 14

Publishing with IRS-III entails associating a deployed Web service with an

IRS-III Web service description. When a Web service is published all of the

information necessary to call the service - the host, port and path - is stored

within the choreography associated with the Web service. Additionally, updates

are made to the appropriate Publishing Platform. IRS-III contains publishing

 15

platforms to support grounding to stand-alone Java and Lisp code and to Web

services. Web applications accessible as HTTP GET requests are handled

internally by the IRS-III server.

4.5 The IRS-III Clients and IRS-III API

IRS-III was designed for ease of use (principle f) and, as mentioned earlier, a

key feature of IRS-III is that Web service invocation is capability driven. The

IRS-III Browser supports this by providing a goal-centric invocation mechanism.

An IRS-III user simply asks for a goal to be solved and the IRS-III broker locates

appropriate Web service semantic descriptions, using the wg-mediators (as

described in Section 6) and then invokes the underlying deployed Web services.

The IRS-III API facilitates the integration of our platform with other SWS

infrastructures thus supporting design principle (i). Additionally, the IRS-III

client and publishing platforms interact with the IRS-III server through the API.

Recent work has seen our API aligned with the API of the Semantic Execution

Environment standard being defined within OASIS [OASIS, 2006].

5. CHOREOGRAPHY AND ORCHESTRATION IN IRS-III

In this section, we describe in detail how the choreography and orchestration of

semantic Web services is implemented in IRS-III. We present a specification for

service interaction which formalizes how the functionality of a deployed Web

service is achieved, through choreography and orchestration. Choreography

focuses on facilitating Web service invocation in a manner which conforms to

pre-specified interaction constraints. Within orchestration, the focus is on

decomposing a Web Service functionality, into sub-goals which can potentially

match against available Web services. At specific points in the brokering of a

user request the IRS-III will need to be able to invoke relevant deployed Web

services.

5.1 IRS-III Service Interaction Specification

Our overall view is that goal achievement consists of a number of discrete steps,

in which, at any given point of the execution, the next action performed will

depend upon the current state. Given the above, we adopt the Abstract State

 16

Machine (ASMs) [Börger, 1998] formalism to represent the IRS-III interaction

with a client (choreography) or providing Web Services (orchestration).

 Abstract State Machines are a mathematical model which provide a parallel

action based formal language capable of describing a single agent and multiple

agents collaborating in an asynchronous fashion. Moreover, ASMs add the

following advantages:

• Minimal ontological commitment [Gruber and Olsen, 1994] - the use of

ASMs minimizes the ontological commitment for the developer. This

principle leads to an increasing of ontological reuse and sharing, particularly

useful in our context and related with the IRS-III design principle (b).

• Comprehensiveness - ASMs are expressive enough to model all aspects

associated with dynamic computation. According with IRS-III principle (h),

comprehensiveness alleviates the difficulties arising when information needs

to be computed on-the-fly.

• Formality - ASMs provide a formal framework for expressing dynamics.

Adopting ASMs, for representing service communication and cooperation,

meets the need of an explicit formal model claimed in the IRS-III design

principle (b).

We describe our service interaction model as the tuple 〈E, S, C, T〉, where:

• E a finite set of events;

• S the (possibly infinite) set of states;

• C the (possibly infinite) set of conditions;

• T represents the (possibly infinite) set of transitions rules.

The events represent actions performed during the interface execution. The

subset of events from E which can occur in choreography and orchestration

differ. Specifically, E = Ec ∪ Eo: where Ec is the set of choreography events;

and Eo is the set of orchestration events. In more detail, Ec = {obtain, present,

provide, receive, obtain-initiative, present-initiative} [Galizia and Domingue,

2004; Domingue et al. 2005b]. Every choreography event maps to an operation

(either WSDL operation, Lisp function or Java method) during the conversation

viewed from the IRS-III perspective. Similarly, the set of possible orchestration

 17

events are Eo = {invoke-goal, invoke-mediator, find-mediator, evaluate-logical-

expression, return-output}. While the choreography events are derived from the

communication model proposed in KADS [De Greef and Breuker, 1992],

orchestration events meet the general goal composition requirements (see the

following section).

The main ASM components are states and transition rules. The notion of state

is formalised as a classical mathematical abstract structure, where, data are

abstract objects, characterized by a signature, comprised of universes, functions,

and relations. The universe or domain is a set of data containing partial functions

and predicates (attributes and relations) which encapsulate the universe.

Transition rules, in ASMs, are local functions which update the abstract

states, and can be expressed as follows:

f(t1, t2, …, tn):= t

where f is an n-ary function, t is a function name, and t1, t2,.., tn are terms.

In our interface model, given a transition step Ti, a state si ∈ S is a non-empty

set of ontologies that define a state signature over which transition rules are

executed. Optional mediators are used to solve ontology or data mismatches.

The parameterized choreography state is a set of instances, concerning

message exchange patterns and the choreography execution. Every state includes

a constant subset, which identifies the Web service host, port, and location,

which is invariant whenever the same Web service is invoked, and the event

instantiation e ∈ Ec, dependent on the event which occurred at step Ti.

The orchestration states characterize the phases of the workflow process

during goal composition. Given a transition step Ti, an orchestration state

contains a description of the triggering-event, the control flow step identifier, and

the result - the output of the achieved sub-goal.

A condition c ∈ C (also called guard) depicts a situation occurring during

interface execution. Every constraint within the condition has to be verified

before the next event is triggered.

Transition rules express changes of state by modifying a set of instances

within the state signature. In particular, a transition rule, t ∈ T, updates the state

after the occurrence of an event, e ∈ E, and consists of a function,

() SSt
E

C →2,: , that associates a pair (s, {c1, .., cn}) to s’, where s and s’ ∈ S,

and every ci ∈ C (1 ≤ i ≤ n) .

5.2 Choreography Implementation

Choreography addresses the problem of communication between a client and a

Web service. Since the IRS-III acts as a broker the focus of our choreography

work is between the IRS-III and the relevant deployed Web services. We assume

that IRS-III clients are able to formulate their request as a goal instance. This

means that we only require choreographies between the IRS-III and the deployed

Web services. Our choreography descriptions are therefore written from the

perspective of the IRS-III as a client of the Web service.

A choreography is described in IRS-III by the declaration of a grounding and

a set of guarded transitions. The grounding specifies the conceptual

representation of the operations involved in the invocation of a Web service and

their mapping to the implementation level. More specifically, the grounding

definitions include operation-name, input-roles-soap-binding, and output-role-

soap-binding. Guarded transitions can be seen as ASM transition rules as above

with two specific restrictions: a) ‘If’ rules do not chain and are of the form “If

condition then Fire Event”; and b) conditions are mutually exclusive so only one

rule can fire at a time. These represent the interaction between IRS-III and the

Web service and are applied when executing the choreography. This model is

executed at a semantic level when IRS-III receives a request to achieve a goal.

Our overall view is that any message sent by IRS-III to a Web service will

depend on its current state, which will include a representation of the messages

received during the current conversation.

As mentioned earlier we classify communication in IRS-III choreography

according to two dimensions, following the system-client cooperation model

proposed in KADS [De Greef and Breuker, 1992], namely: 1) the initiative in the

communication; and 2) the direction of the communication [Galizia and

Domingue, 2004]. The initiative dimension expresses which actor, either the

 18

 19

IRS-III or the Web service, is responsible for starting the communication, while

the direction represents the communication route, which can be from the system

to the client or vice-versa.

5.2.1 Choreography primitives

As mentioned in Section 4.2.2 a set of primitives have been included within IRS-

III service ontology; among them, we have defined a set of choreography specific

primitives, specialising the events listed above, which can be used in transition

rules. Our primitives provide an easy to use interface to control a conversation

between IRS-III and a Web service. Developers are also able to include any

relation defined with the imported ontologies within guarded transition

specifications.

Init-choreography. Initializes the state of the choreography. This primitive runs

before a Web service is invoked by IRS-III. At this point IRS-III has the

initiative and is ready to start the communication.

Send-message. Calls a specific operation in the Web service. If no inputs are

explicitly given, IRS-III uses the input values from the original goal invocation.

The type of event which occurs with send-message is present (see Section

5.1) since IRS-III holds the initiative and the communication direction is from

IRS-III to the Web service.

Send-suspend. Suspends the communication between IRS-III and the Web

service, without stopping the choreography execution. This action will occur, for

example, when the IRS-III lacks some data required by a Web service. Executing

this primitive suspends the dialog and stores the current state so that

communication can be resumed later. The event associated to send-suspend is

present since communication direction is from IRS-III to the Web service and the

IRS-III has (and keeps) the initiative.

Received-suspend. The communication is suspended by the Web service, when

for some reason it is not able to respond to an invocation. As with send-suspend

the choreography execution is put on hold. The Web service is free to resume the

dialog when conditions allow. The event occurring here is receive, because the

Web service has taken the initiative from IRS-III and the communication

direction is from the Web service to IRS-III.

Figure 3. The choreography primitives and events arising when a Web service suspends

communication.

Figure 3 shows choreography primitives and events which occur when a Web

service suspends communication. Initially IRS-III has initiative, but it is handed

over to the Web service, by executing the primitive send-message and

respectively triggering the event present-initiative. The Web service suspends the

communication through the event receive. The corresponding IRS-III primitive is

receive-suspend. When the Web service resumes the dialog the associated event

is receive again, because the Web service still has the initiative, and the executed

primitive is receive-message. Both the primitives send-suspend and receive-

suspend can generate a time-out error received from the Web service. That is

managed by the primitive receive-error, described below. IRS-III does not have

its own time-out management system.

Received-message. Contains the result of a successful send-message for a

specific operation. In the general case the trigged event is obtain, if however the

Web service had previously suspended the communication it will be receive (see

Figure 3). In both situations the message direction is from the Web service to

IRS-III, but in the former, IRS-III has the initiative, and in the latter the Web

service has control of the dialog.

Received-error. If the execution of a Web service causes an error, then the

received-error primitive is used. The parameters of received-error include the

error message and the type of error which occurred. Time-out is a possible error
 20

 21

which can occur. In a fashion similar to received-message, described above, the

event taking place is either obtain or receive.

End-choreography. Stops the choreography. No other guarded transitions will

be executed.

5.2.2 Choreography execution

The IRS-III uses the OCML forward-chaining-rule engine (Section 4.1) to

execute a choreography. This means that rules belonging to a choreography are

fired according to the state. One important feature of the execution environment

of IRS-III is that it allows the scope of the choreography to be defined for the set

of ontologies involved in the Web service description.

The IRS-III server carries out inferences at an ontological level. As mentioned

earlier, the IRS-III components are specified as combination of an ontological

meta layer and WSMO definitions. During communication with a Web service,

the ontological level descriptions need to be mapped to the XML based

representations used by the specific Web service invoked. We provide two

mechanisms which map: a) from the ontological level to XML (lower); and, b)

from XML to the ontological level (lift).

The Lift construct lifts an XML string to an ontological relation, represented

in OCML. A generic version of this relation is defined within the IRS-III

ontology. SWS developers are free to overwrite this relation inline with the

relationship between the results of Web service calls and the ontologies used.

The lift primitive has the following input parameters: class-name, web-service-

class, xml-string and produces an instance of class-name as output. The semantic

developer can thus customize how XML is parsed according to the classes within

the underlying ontology and the particular Web services selected. In order to

cope with input in XML format the lift primitive utilizes an inbuilt SAX based

XML parser.

The Lower construct lowers ontological elements to XML. The input

parameters to lower are: instance-name and a Web service class. The output is

xml-string. As for the lift primitive, the XML generated can be customized

according to classes within the ontology and the Web service class. For example,

 22

the XML generated for instances of a person class may include a full name for

one Web service and only a family name for another.

The lifting and lowering definitions are created manually at design time. Our

mechanisms overlap with XSLT transformations in that we have defined a

number of XML access and XML query functions which are accessible from the

IRS-III service ontology. The main difference is based upon the fact that our

transformations can make use of the semantic Web service descriptions. For

example, the type and structure of instances created from XML in a lifting phase,

can be based upon rules. Also, as mentioned above, the serialization produced in

the lowering phase depends on the class of the target instance.

5.2.3 Choreography Example

Our choreography example is based on the application illustrated in Section 8.

Particularly, we refer to the choreography description of the Gis-Filter-WS

Web service depicted in Figure 9. This service receives as input a list of possible

accommodation centres for an emergency (e.g. hospitals, inns, rest centres, etc.),

and it returns a filtered list according to the specific situation. For each kind of

accommodation, a specific filtering operation is available.
Gis-Filter-Web-Service-Interface-Choreography

Grounding:

 grounded-to-lisp normal gis-filter
 has-gis-data "sexpr"
 "sexpr"
 grounded-to-lisp filter-hospitals gis-internal-filter-hospitals
 has-gis-data "sexpr"
 "sexpr"
 grounded-to-lisp filter-inns gis-internal-filter-inns
 has-gis-data "sexpr"
 "sexpr"

 ... omitted ...

 grounded-to-lisp acknowledge-error acknowledge-error-message
 has-acknowledgement "int"
 "string"

Guarded-transitions:

 start
 init-choreography
 then
 send-message 'normal

 exec-filter-hospitals
 received-message normal ?result

 23

 hospital ?result
 then
 send-message 'filter-hospitals
 end-choreography

 exec-filter-inns
 received-message normal ?result
 inn ?result
 then
 send-message 'filter-inns
 end-choreography

 ... omitted ...

 gis-data-error-transition
 received-error normal ?error-message ?error-type
 gis-data-type-error ?error-type
 then
 send-message-with-new-input-role-pairs
 'acknowledge-error has-acknowledgement 0
 end-choreography

Listing 2. The Gis-Filter-Web-Service-Interface-Choreography example.

In Listing 2 we show a portion of the grounding definition. After the operation

name the next part of the grounding description contains the name of the

implementing component. In this case it is the name of the Lisp function within

the Lisp publishing platform. For a standard Web service one would use the

name of the operation within the WSDL file, and for a Java implementation it

would be the name of the Java class and method. The soap bindings for the inputs

and output are then specified.

The second part of the choreography contains the set of guarded transitions.

Above we show four guarded transitions. Start initializes the choreography

session and then invokes the deployed service by sending the message associated

with the normal operation. Send-message takes the values of the input roles

from the associated goal instance, transforms the values to an XML

representation (using lower), and then invokes the Web service. Exec-filter-

hospitals and exec-filter-inns use the choreography specific

received-message relation. Responses from a Web service invocation are first

transformed into an ontological representation, using the relation lift, and then

asserted as (received-message <operation-name> <lifted-

invocation-response>). The following expressions in the condition check

whether the result of the invocation is the expected accommodation type (e.g. a

 24

list of either hospitals or inns). The executive part of the guarded transition sends

a message related to the respective operations and ends the choreography.

The final guarded transition shown, gis-data-error-transition, handles

data type errors. When this is the case the acknowledge-error operation is

invoked. Every guarded transition execution updates the choreography state.

5.3 Orchestration Implementation

An orchestration formalism and supporting architecture components should

support a range of tasks related to the definition of service control and data flow.

These tasks will include: the creation of an orchestration by a developer; the

execution of an orchestration; visualizing an orchestration definition; reasoning

about behaviour; and conformance testing (against for example a Web service

choreography). Our work up until now has concentrated on the first three tasks

whilst ongoing work, [Norton, 2007], is investigating the remaining tasks.

In IRS-III, the orchestration is used to describe the model of a composed Web

service. At the semantic level the orchestration is represented by a workflow

model expressed in OCML. The distinguishing characteristic of this model is that

the basic unit within composition is a goal. Thus, the model provides control and

data flow constructs over a set of goals. Further, dataflow and the resolution of

mismatches between goals is supported by mediators.

We have found that our work on orchestration has led to a number of

composition specific requirements which we list below.

• Goal centric composition - following from the top level design principle

of capability based invocation (d). The basic unit within composition is a

goal. We thus provide control and data flow constructs over sets of goals.

• Invocation is one-shot - currently, we assume that when a goal is invoked

the result is returned and there is no direct interaction between any of the

underlying Web services involved. A corollary of this principle is that all

communication is mediated by IRS-III. Thus a dialog between two Web

services becomes a combination of an appropriate loop construct and a

pair of IRS-III to Web service choreographies.

 25

• Orchestration is layered - no one representation can fully support the full

range of tasks for which an orchestration will be used. Within the IRS-III

we are thus creating a number of layers each of which support a specific

set of activities.

We provide design-time compositional support through a simple goal

discovery tool. A simple form enables goals to be found according to a variety of

properties including the type of input or output role and non functional

properties.

5.3.1 Orchestration primitives

Layered on top of ASMs, we provide a set of control flow primitives which have

been implemented so far in IRS-III as listed below.

Orch-sequence. Contains the list of goals to be invoked sequentially. A gg-

mediator can optionally be declared between the goals, in which case the output

of the source goal is transformed by the mediation service (if there is one) and

used as input of the target goal.

Orch-if. Contains a condition and a body with one or more workflow primitives.

The body part is executed if the declared condition is true.

Orch-repeat. Contains a condition and a body with one or more workflow

primitives. The body part is repeated until the declared condition is false.

Orch-get-goal-value. Returns the result of the last invocation of the declared

goal (used for example as part of a condition).

Orch-return. Returns the argument given as the result of the current context or

orchestration.

5.3.2 Orchestration Example

A full example which includes orchestration is given in Section 8, with the

semantic descriptions described in Section 8.2.4. We refer to Figure 9 which

shows how an orchestration is formed therein over three subgoals. The orch-

sequence primitive, described above, is used to link the three subgoals in a

control flow, and four gg-mediators are used to define their control flow:

 Get-polygon-gis-data-with-filter-ws-interface-orchestartion

 has-problem-solving-pattern

 26

 get-polygon-gis-data-with-filter-ws-interface-orchestartion-psp

 Get-polygon-gis-data-with-filter-ws-interface-orchestartion-psp

 (problem-solving-pattern)

 has-body

 orch-seq

 convert-polygon-points-goal

 get-circle-gis-goal

 gis-filter-goal

 Polygon-to-circle-radius-gg-mediator

 (gg-mediator)

 has-source-component convert-polygon-points-goal

 has-target-component get-circle-gis-data-goal

 has-mediation-service polygon-to-circle-radius-goal

Listing 3. An orchestration example - get-polygon-gis-data-with-filter-ws-

interface-orchestration - taken from the eGovernment example in Section 8.

6. MEDIATION

Our mediation approach consists of modelling specialized mediators which

provide a mediation service or declarative mappings for solving different types of

conceptual mismatches. The mediation handler interprets each type of mediator

accordingly during selection, invocation and orchestration. The mediator models

are created at design time and used at runtime.

6.1. Meditation Specification

In the following we present a specification for mediation based on the

example in Figure 4. Here, we will refer to Web service and mediator

descriptions independently from their implementations.

Mediator descriptions M between ontologies O, Web service descriptions WS

and goal descriptions G can be defined according to the following cases:

a. Two different Web services, say WS1 and WS3, can access different data,

say x and y, denoted by different concepts, say Customer and Client,

through different ontologies, say O1 and O3. We view this as a standard

case in the context of the semantic Web.

b. Two different Web services, say WS1 and WS2, can access different data,

say x and y, but denote the same concept, say Customer, by sharing the

same ontology, say O1.

c. Two different Web services, say WS2 and WS3, can access the same data,

say y, but denote two different concepts, say Customer and Client, by

using different ontologies, say O1 and O3.

d. A Web service, say WS1 with an input/output parameter of an arbitrary

type, say Customer may be able to achieve a goal, say G1, with an

input/output parameter of arbitrary type, say Citizen.

e. Two Web services, say WS2 and WS3, may be combined (e.g. through a

sequence workflow construct) to provide a composed Web service

functionality, which may be able to achieve a goal, say G1.

f. Two goals (not shown) may also be combined to provide a composed

Web service functionality, which may be able to achieve a goal, say G1.

Figure 4. An example of mediation in the context of SWS

Our solution to the above would be comprised of five types of mediators of

the form SMT, where S is the source of the mediator and T the target of the

mediator as follows:

1. OpMOq mediates between instances of Op and instances of Oq, which can

be associated with a goal or Web service.

 27

2. GpMWSq mediates between input/request elements of Gp denoted by

and input/request elements of WSq, denoted by .

IN
pG

IN
qWS

3. WSqMGp mediates between output/response elements of WSq denoted by

and output/response elements of Gp, denoted by . OUT
qWS OUT

pG

4. GpMGq mediates between output/response elements of Gp, denoted

by , and input/request elements of Gq, denoted by . OUT
pG IN

qG

5. WSpMWSq mediates between output/response elements of WSp, denoted by

 and input/request elements of WSq, denoted by . OUT
pWS IN

qWS

We can associate a relation mapping (MAP) to the OpMOq mediator above in

order to map between instances of ontologies Op and Oq. MAP can be modelled

as logical rules, which can be generated with the support of a design-time tool.

The remaining types of mediators can be associated with a mediation function

(MF), which can be modelled just as a standard semantic Web service in order to

perform transformations between inputs and outputs. As indicated above, these

mediators can provide mediated data-flow between a goal and a Web service, and

between Web services or goals. Thus, MF and MAP are executable components

to be used at runtime.

6.2. Mediation Implementation in IRS-III

In IRS-III we represent the types of mediators defined above using the

WSMO-based models of oo-mediator, wg-mediator, gg-mediator and ww-

mediator (as shown in Appendix I). As we stated in Section 4.2, our model

includes meta-classes for the top-level components, which also includes meta

classes of the main mediators. A mediator declares a source component, a target

component and either a mediation service or mapping rules. Hence, the mediator

provides a semantic link between the source component and the target

component, which enables mediation services or mapping rules to resolve

mismatches between the two. In this model, the mediation service is just another

goal. For example, a mediation service in a wg-mediator transforms the input

 28

 29

values coming from the source goal into an input value used by the target Web

service (see also [Cabral and Domingue, 2005]).

6.2.1. Mapping rules

Mapping rules (MAP in the specification above) are used between two

ontologies (source and target components). These mappings target the concepts

used during invocation and consist of three main mapping primitives:

• Maps-to. A relation created internally for every mapped instance.

• Def-concept-mapping. Generates the mappings, specified with the maps-

to relation, between two ontological concepts.

• Def-relation-mapping. Generates a mapping between two relations using

a rule definition within an ontology. As OCML represents concept

attributes as relations, this primitive can be used to map between input and

output descriptions.

Listing 3 shows an example of a mapping rule and how it has been used to

link the slots of classes in two different ontologies. More specifically, the

definitions below link the has-citizen-name slot of class citizen in the

source ontology to the has-client-name slot of class client in the target

ontology. The def-concept-mapping construct associates each instance of

the citizen class to a newly created instance of the client class and links

them by generating instances of the relation maps-to internally. The def-

relation-mapping construct uses the generated maps-to relation instances

within a rule which asserts the value of the mapped citizen name to the value of

the client name.

IRS-III executes the mapping rules within a temporary ontology created by

merging the source and target ontologies. The temporary ontology is then

discarded after the Web service invocation.
def-concept-mapping citizen client

def-relation-mapping citizen-client-name-mapping
 (has-client-name ?client ?value)
 if
 (maps-to ?client ?citizen)
 (has-citizen-name ?citizen ?value)

Listing 3. An example of a mapping rule mapping between citizen and client concepts.

6.2.2. Mediation Services

Wg-mediators, gg-mediators and ww-mediators have a data mediation

capacity for transforming inputs between source and target components by using

mediation services (MF, in the specification above) and have different roles

within the process mediation as explained next.

Figure 5. Mediation between a goal and a Web service. Two inputs of a goal are transformed

into one input of the target Web service

Figure 5 shows a graphical illustration of mediation taking place between a

goal and a Web service via a wg-mediator. In this example, the goal requested by

the application takes two inputs (first and last names), which are transformed by

the mediation service into one input (name) used by the target Web service. A

specific example of a gg-mediator in the context of orchestration can be see in

section 5.3.3.

6.2.3. The mediation handler

The overall design goal for IRS-III is to act as a semantic broker between a

client application and deployed Web services available at large on the Internet.

This brokering activity can be seen as mediation itself, which within IRS-III is

further broken down into data, goal and process mediation, each supported by a

specific module in the architecture. The IRS-III mediation handler and its

relationship to the other main IRS-III components and semantic descriptions are

shown in Figure 6.

 30

Figure 6. The IRS-III mediation hander. Components are labelled in bold and semantic

descriptions are labelled in italics.

The steps below describe the overall sequence of mediation activities taking

place during the selection, composition and invocation of semantic Web services.

1. The Goal Mediator component searches for wg-mediators whose source

component matches the current goal request from a client application. It

selects a Web service which matches the requested capabilities (input types,

preconditions, assumptions, non-functional properties etc). The types of

mismatches that can occur are: a) the input types of a goal are different from

the input types of the target Web service; and b) Web services have more

inputs than the goal.

2. The Process Mediator component establishes an interaction with a deployed

Web service by executing its Web service client choreography. The Process

Mediator creates the communication messages corresponding to the

choreography communication primitives. Additionally, the Process Mediator

keeps the state of the communication throughout the sequence of operation

calls executed by the Invoker component.

3. The Process Mediator can also execute the orchestration of a composite Web

service. Here the Process Mediator keeps the state of the orchestration (control

and data flow) between the invocations of sub-goals. Additionally, the Process

Mediator searches for gg-mediators connecting sub-goals in the orchestration.

The presence of gg-mediators indicate that dataflow will occur between the

 31

sub-goals with mismatches resolved by the declared mediation service. The

types of mismatches which can occur are: a) output types of a sub-goal are

different from the input types of the target sub-goal; b) output values of a sub-

goal are in a different order from the inputs of the target sub-goal; and, c) the

output of a sub-goal has to be split or concatenated into the inputs of the target

sub-goals.

4. The Data Mediator component is used by the Goal Mediator and by the

Process Mediator to map data across domain ontologies. Mapping rules

declared within oo-mediators are executed to achieve the desired mapping.

7. CREATING SEMANTIC WEB SERVICE BASED APPLICATIONS

Figure 7. The generic architecture used when creating IRS-III based applications.

Our generic application architecture is depicted in Figure 7. As can be seen,

the architecture is composed of four layers and enables collaboration between

one or more stakeholders in a distributed fashion. In particular, our approach

enables the functionality provided by existing legacy systems from the involved

business partners to be exposed as Web services, which are then semantically

annotated and published using the IRS-III infrastructure. From the bottom up the

four application layers are:

• Legacy system layer - consists of the existing data sources and IT systems

available from each of the parties involved in the integrated application.

 32

 33

• Service abstraction layer - exposes the (micro-)functionality of the legacy

systems as Web services, abstracting from the hardware and software

platforms. In general existing Enterprise Application Integration (EAI)

software will facilitate the creation of the required Web services. Note that

for standard databases the necessary functionality of the Web services can

simply be implemented as SQL query functions.

• Semantic Web services layer – given a goal request, this layer, implemented

in IRS-III, will: a) discover a candidate set of services; b) select the most

appropriate; c) resolve any mismatches at the data, ontological or process

level; and d) invoke the relevant set of Web services satisfying any data,

control flow and invocation requirements. To achieve this, IRS-III, utilises

the set of semantic Web service descriptions which are composed of goals,

mediators, and Web services, supported by relevant ontologies.

• Presentation layer – a Web application accessible through a standard Web

browser which is built upon the semantic Web services layer. The goals

defined within the semantic Web services layer are reflected in the structure

of the interface and can be invoked either through the IRS-III API or as an

HTTP GET request. We should emphasise that the presentation layer may be

comprised of a set of Web applications to support different user

communities. In this case each community would be represented by a set of

goals supported by community related ontologies.

In order to successfully create applications from semantic Web services as

depicted in Figure 7 above four key activities need to be carried out as follows:

1. Requirements capture – the requirements for the overall application are

captured using standard software engineering methodologies and tools. We

do not advocate any particular requirements capture method, but envisage

that the resulting documents describe the stakeholders, the main users and

roles, any potential providers for Web services, and any requirements on the

deployed infrastructure and interfaces.

2. Goal description – using the requirements documents above, relevant goals

are identified and described in IRS-III. During this process any required

 34

supporting domain ontologies will either be created from scratch or existing

ontologies will be re-used.

3. Web service description – descriptions of relevant Web services are created

within IRS-III. Again, any domain ontologies required to support the Web

service descriptions are either defined or re-used as necessary.

4. Mediator description – mismatches between the ontologies used, and

mismatches within and between the formal goal and Web service

descriptions are identified and appropriate mediators created (see Section 6).

All of the above steps are carried out by the SWS application developer. The

first two steps are user/client centric and therefore involve discussions with the

relevant client stakeholders, whereas Step 3 will require dialogue with the Web

service providers. Steps 2 and 3 are mostly independent and in the future we

expect libraries of goals and Web services to become generally available to

support re-use.

In the next section we illustrate how we used the general application

development approach to build an eGovernment application for emergency

planning.

8. AN IRS-III EGOVERNMENT APPLICATION

In general, governmental agencies will operate autonomously under different

tiers of government with no central control. For example, the scenario below

involves national, county and district level agencies. IT based collaboration in

these circumstances where distributed heterogeneous software platforms need to

interoperate, in terms of data and processes, without a central control regime

provides a natural application area for SWS technology. Additionally,

government agencies will each have their own distinct viewpoints which will

differ again from the general citizen. The ability to aggregate and re-use diverse

information resources relevant to a given situation and further to make this

available as a basis for transparent interaction between community partner

organisations and individual citizens is a key benefit that SWS technology can

provide.

In the last few years a number of projects have applied SWS technology in the

eGovernment domain, but only a few among them show reusability and

composability in a real usage scenario [Medjahed and Bouguettaya, 2005;

Medjahed, 2005]. Our application, developed within the context of the EU

funded DIP project [DIP, 2004], integrates a diverse set of Web services into an

easy-to-use Web based interface.

8.1 Application Scenario and requirements

The overall context of the application is Essex County Council (ECC). ECC is

a large local authority in South East England (UK) comprised of 13 boroughs and

containing a population of 1.3M. Following a number of initial interviews with a

variety of stakeholders holders in ECC it was decided to focus the scenario on the

ECC Emergency Planning department, and more concretely to focus on

emergencies which arise from extreme weather conditions. The Emergency

Management System (EMS) application, called eMerges [Tanasescu et al. 2007],

is a decision support system which assists an Emergency Planning Officer (EPO),

in gathering information related to an extreme weather emergency.

8.2 Architecture

Figure 8. The architecture for the Emergency Planning Management System which follows the

4-layered approach described in Section 8.

 35

 36

As shown in the Figure 8, based upon the generic application framework

introduced in the previous section, we developed an application architecture

comprised of the following four layers.

8.2.1 Legacy system layer

The EMS aggregates data and functionalities from three different sources:

• Meteorological (MET) Office – a national UK organisation which provides

environmental resources and in particular weather forecast data.

• ViewEssex - a collaboration between ECC and British Telecom (BT) which

has created a single corporate spatial data warehouse. As can be expected

ViewEssex contains a wide range of data including data for roads,

administrative boundaries, buildings, and Ordnance Survey maps, as well as

environmental and social care data. Within the application we used building

related data to support searches for suitable rest centres.

• BuddySpace - an instant messaging client facilitating lightweight

communication, collaboration, and presence management [Eisenstadt et al.,

2003] built on top of the Jabber instant messaging protocol [Jabber, 2006].

The BuddySpace client can be accessed on standard PCs, as well as on PDAs

and on mobile phones, which in an emergency situation may be the only

hardware device available.

8.2.2 Service abstraction layer

We distinguish between two classes of services: data and smart. The former

refer to the three data sources introduced above, and are exposed by means of

Web services:

• Meteorological service – this service provides weather information (e.g.

snowfall) over a specific rectangular spatial area.

• ECC Emergency Planning services – using the ViewEssex data each service

in this set returns detailed information on a specific type of rest centre within

a given circular area. For example, the ‘getHospitals’ Web service returns a

list of relevant hospitals.

• BuddySpace services – these services allow presence information for online

users to be accessed.

 37

Smart services represent specific emergency planning reasoning and

operations on the data provided by the data services. They are implemented in a

mixture of OCML and Lisp and make use of the EMS ontologies. In particular,

we created a number of filter services which select the GIS data according to

emergency-specific requirements (e.g. rest centres with heating system, hotels

with at least 40 beds, easy accessible hospital, etc.). The criteria used were

gained from our discussions with the EPOs and therefore mean that users will

only receive information relevant to the specific situation.

8.2.3 Domain Ontologies for the Semantic Web services layer

As we stated in Section 7, the semantic Web services layer is comprised of

SWS descriptions within IRS-III. The goals, mediator and Web service

definitions use ontologies which reflect the client and provider domains. The

following ontologies were developed to support the SWS descriptions.

• GUI ontology - is composed of user-interface concepts and is used to display

the results of invocations to the IRS-III. The ontology also allows us to

abstract over the particular interface that is used. For the EMS application we

instantiated the ontology to reflect the Google Maps API.

• Archetypes ontology – based on the work of Mark [Mark, 1989], this

ontology provides a cognitively plausible description of geographical objects.

For example, in addition to being a place where ill people are treated a

hospital can be viewed as a ‘container’ of people and provider of ‘shelter’

since it shares features with the archetypal ‘house’ concept. It is assumed

that any client, whilst maybe lacking the specific knowledge for domain

specific concepts, will be familiar with the archetypes contained in this

ontology.

• SGIS spatial ontology - describes the concepts commonly found in GIS, such

as points, spatial objects with attributes, polygons and fields. A field denotes

an object with no clear boundary, such as a flood area.

• Meteorology, ECC Emergency Planning and Jabber domain ontologies –

these ontologies represent the concepts used within the services attached to

the data sources, such as ‘snow’ and ‘rain’ for the Met Office, ‘hospitals’ and

‘supermarkets’ for ECC Emergency Planning, and ‘session’ and ‘presence’

for the Jabber services.

The existence of several domain ontologies reflects our principles (b) and (c)

(see Section 3), where the different actor viewpoints/terminologies (user and

three data providers) are independently represented ontologically.

8.2.4 Semantic Web Service Descriptions

As prescribed in Section 7, the goals, mediators, and Web service descriptions

of our application link the Met Office, ECC Emergency Planning, and

BuddySpace Web services to the user interface. Correspondingly, the Web

service goal descriptions use the SGIS spatial, meteorology, ECC Emergency

Planning and Jabber domain ontologies whilst the goal encodings additionally

rely on the GUI and archetypes ontologies. Mismatches are resolved by the

defined mediators.

Figure 9. A portion of the WSMO descriptions for the EMS application.

A small portion of the SWS descriptions are shown in Figure 9. Get-

Polygon-GIS-data-with-Filter-Goal represents a request for available

shelters within a delimited area. The user specifies the requirements as a target

area, a sequence of at least three points (a polygon), and a shelter type (e.g.

hospital, inn or hotel). As mentioned above the set of ECC Emergency Planning

 38

 39

Web services each return potential shelters of a specific type with a circular

query area. The obtained results need to be filtered in order to return only shelters

correlated to emergency-specific requirements (for example a snowstorm). From

an SWS point of view the problems to be solved by this particular portion of the

SWS layer included: (a) selecting the appropriate ECC Emergency Planning Web

service; (b) meditating the difference in area representations (polygon vs.

circular) between the goal and Web services; and (c) orchestrating the retrieve

and filter data operations. Below we outline how the SWS representations in

Figure 9 addresses these problems.

• Web service selection - each SWS description of an ECC Emergency

Planning service defines, in its capability, the specific class of shelter that the

service provides. Each definition is linked to the Get-Circle-GIS-Data-

Goal by means of a unique wg-mediator (shown as wgM). The inputs of the

goal specify the class of shelter, and the circular query area. At invocation

IRS-III discovers through the wg-mediator all associated Web services, and

selects one on the basis of the specific class of shelter described in the Web

service capability.

• Area mediation and orchestration – the Get-Polygon-GIS-data-with-

Filter-Goal is associated with a unique Web service that orchestrates by

simply invoking three sub-goals in sequence. The first gets the list of

polygon points from the input; the second is Get-Circle-GIS-Data-Goal

described above; finally, the third invokes the smart service that filters the

list of GIS data. The first two sub-goals are linked by means of three gg-

mediators (depicted as ggM) that return the centre, as a latitude and

longitude, and radius of the smallest circle which circumscribes the given

polygon. To accomplish this, we created three mediation services invoked

through: Polygon-to-Circle-Lat-Goal, Polygon-to-Circle-Lon-

Goal, and Polygon-to-Circle-Rad-Goal (the related wg-mediator and

Web service ovals were omitted to avoid cluttering the diagram). The results

of the mediation services and the class of shelter required are provided as

inputs to the second sub-goal. A unique gg-mediator connects the output of

the second to the input of the third sub-goal. In this case no mediation service

is necessary.

8.2.5 Presentation layer

The prototype implementation is a Web interface using Google Maps for the

spatial representation part of the application. The interface is built using the

Google Web Toolkit2, using AJAX techniques on the client to communicate with

a Java servlet, which itself connects to IRS-III through its Java API. The most

significant component of the interface is a central map, supporting spatial

objects. A spatial object can have an area based location, in which case it is

displayed as a polygon, or be point based, in which case it is displayed as a

symbol. All objects present the same interface, with affordances and features,

displayed in a pop up window or in a hovering transparent region.

Figure 10. Showing three screenshots of our application in use. 10a) Goals available for the

snow hazard, 10b) obtaining detailed information for a specific rest centre, 10c) initiating a

discussion with an online emergency worker.

Imagine that an EPO would like to know which rest centres are available

within a particular area and then to use this information to contact relevant local

agency staff. To achieve this, the EPO would carry out the steps below:

 40
2 http://code.google.com/webtoolkit/

 41

1. Based on external information the EPO draws a polygon on the map, then,

assigns a hazard type to the region. In this case our EPO has selected

snow storm.

2. The EPO clicks within the displayed hazard region to bring up a menu of

available goals. In this case (Figure 10a) three goals are available: show

available shelters, login to BuddySpace and get the presence information

for related staff.

3. The EPO asks for the available Rest Centres inside the region, and then

inspects the detailed attributes for the Rest Centre returned (Figure 10b).

4. The EPO requests to see the presence status for all staff within the region

and then starts a discussion the closest online agency worker (Figure 10c).

Since IRS-III SWS integration allows the description of any XML data

source available on the Web, the data source integration approach presents

notable advantages compared to approaches based on standards such as the

one demonstrated in the OWS-3 initiative3. The advantages can be

summarized as follows:

• Framework openness - standards make integration easier but are not

mandatory; any other schema can be integrated into the system.

• High level service support - all the benefits of the underlying IRS-III

SWS platform, such as discovery and composition etc. are

immediately available; in other solutions support for discovery and

composition is embedded within the syntactic standards themselves,

which implies a specific format and adds ad hoc reasoning

capabilities to standard software applications, which is time

consuming and error prone.

The eMerges Web application is available at http://irs-

test.open.ac.uk:8080/EMerges/.

3 http://www.opengeospatial.org/projects/initiatives/ows-3

 42

9. BENEFITS OF OUR APPROACH

The combination of an SWS-based approach, a meta-model completely captured

within an ontology, a comprehensive infrastructure and adherence to agreed APIs

provides a number of benefits for our approach.

By adopting SWS, we capture the knowledge associated with the background

context together with the requested and provided capabilities of services, and

hence support automatic reasoning and reuse. In this way, service invocation,

discovery, composition, and mediation can be automated by adopting the best

available solutions for a specific request increasing the flexibility, scalability, and

maintainability of an application. Particularly, in IRS-III, the actual execution

sequence of services is not hard-coded, but it is dynamically created using goal-

based discovery and invocation. Several Web services may be associated with a

goal, and only the most applicable will be discovered and invoked at runtime

(late binding). If a new service becomes available, the developers simply need to

describe and then link it to an existing goal. If a service is altered, the specific

semantic description will be affected only, and not the whole business process.

The definition of the internal IRS-III mechanisms as a combination of an

ontological meta-layer and WSMO definitions provides a non-ambiguous

understandable operational semantic definition. Additionally, the substitution of

IRS-III components (e.g. for orchestration or mediation) by external services

becomes feasible.

Creating and managing ontologies is a time consuming expensive activity

which involves: understanding a domain, acquiring and representing knowledge,

and populating with instances. Maintaining consistency when a target domain or

related resources are altered adds further complications. For example, in complex

domains such as eGovernment, centralized ontologies would require an

unrealistic development effort with no guarantee of satisfactory results in terms

of comprehensively capturing domain knowledge. Moreover, eGovernment

domains by their very nature have no central control as multiple agencies

stationed at different levels of government, from local district to the national

level, are involved. IRS-III provides a comprehensive infrastructure which has

 43

been used in a number of real world settings including eGovernment (described

in this paper) and medical imaging [Dupplaw et al., 2004]. The proposed

methodology makes the knowledge capture and maintenance process simpler and

more efficient in two ways. Firstly, only knowledge directly related to the

exposed functionality need be modelled. This minimalist approach also improves

the management of the ontology evolution and maintenance phases. Secondly,

the knowledge capture effort can be distributed among all of the stakeholders:

each party describes – and it is responsible for – its particular domain; in this

way, several viewpoints can be independently and concurrently described.

Involved parties can also reuse already existing ontologies. Our mediators are

able to resolve mismatches among the several viewpoints without the need to

alter any parties existing code or service. As a result, we obtain a model that

addresses the required lack of central control.

Finally, our multiple publishing platforms introduce two further benefits: a)

they significantly lower the barrier in moving from stand alone code to a SWS,

and b) they ensure that IRS-III is independent of any particular communication

protocol.

10. RELATED WORK

There are a number of existing Semantic Web Services approaches, which we

outline in the following, with the common objective of automating the tasks of

Web service discovery, selection, composition, mediation and invocation. IRS-III

distinguishes itself from these approaches mainly because it relies on a

knowledge-based integrated environment for modelling, reasoning and

execution. We take advantage of the representational and reasoning power of

OCML (see Section 4.1), not only for modelling ontologically the semantic

descriptions of goals, Web Services and mediators, but also for implementing

(with the support of Lisp) many of the components that perform selection,

choreography, orchestration and mediation. More specifically, IRS-III comprises

a combination of: a) an explicit representation of the IRS-III Service Ontology;

b) an OCML meta-layer supporting reasoning over goal, mediator and Web

 44

service classes (see Section 4.2.2 and appendices I and II; and c) OCML relations

supporting the description and execution of internal components (see Appendix

III).

IRS-III is an extension of the previous IRS-II framework [Motta et al., 2003],

which is based on an early approach to providing reusable components over the

Internet, namely the UPML framework [Fensel and Motta, 2001], funded by the

European Commission within the IBROW project [Benjamins et al., 1998]. The

UPML framework supported the semi-automatic construction of knowledge

intensive applications by structuring reusable knowledge components into tasks,

problem solving methods and domain models. Bridges were used to connect

knowledge models of different types. In IRS-I [Crubezy et al., 2002], the UPML

framework was used to broker between task based requests and a library of

problem solving methods, and within IRS-II problem solving methods were

linked to deployed Web services. In IRS-III we have adapted our platform to be

WSMO compliant and focused on Web service specific issues.

The work most closely related to our approach is WSMX [WSMX, 2005], the

reference implementation of WSMO with which we share a common API

(currently standardised through OASIS). WSMX is an open source service

oriented architecture, which uses a de-coupled reasoning service. Unlike IRS-III,

the WSMO conceptual model, which is defined using the OMG Meta-Object

Facility (MOF) [OMG, 2002], is not contained within WSMX, and thus can not

be combined with ontology instances represented in the WSMO reference

language WSML [WSML, 2005].

The OWL-S approach [OWL-S, 2006] defines an upper ontology for

semantically describing Web services and is comprised of three top-level

elements: service profile, service model and service grounding. The core

functional description of services in OWL-S is contained in the service profile. A

service is described mainly in terms of its functional parameters: inputs, outputs,

preconditions and effects (IOPEs). The OWL-S service model describes services

behaviourally through a process model which divides processes into two types:

atomic processes and composite process. Composite processes are specified

 45

through a pre-defined set of control structures. The main differences between the

OWL-S and IRS-III approaches are mainly derived from the differences between

OWL-S and WSMO. The OWL-S profile is comparable to WSMO capabilities

and non-functional properties and the OWL-S process model is equivalent to

orchestration in WSMO. However, OWL-S does not define Web service

choreographies and has no explicit notion of a goal or mediator. Within OWL-S,

mediation is considered to be handled during discovery and decomposition

through architectural components and mediation services are treated as ‘standard’

Web services. In contrast WSMO based approaches regard the mediation role as

a first class citizen. In addition, OWL-S differs from IRS-III by not having an

integrated architecture. However, a number of OWL-S related tools have been

implemented such as the OWL-S plug-in for Protégé [OWL-S Tools, 2006], the

OWL-S Web service Matcher4 (OWLSM), and an OWL-S Plug-in for Axis5. The

core OWL-S framework is the OWL-Virtual Machine (former DAML-S VM)

[Paolucci et al., 2003], a general purpose Web service client which relies on the

OWL-S process model and grounding to support interaction between OWL-S

Web services.

Another related SWS approach is called WSDL-S and which was developed

within the METEOR-S project [METEOR-S, 2006]. WSDL-S mainly differs

from the previous mentioned frameworks because it follows a bottom-up

approach for semantically describing Web services. This approach defines

WSDL extensions for, representing preconditions, effects and data mappings by

linking WSDL elements to external ontologies. Part of this work is now taking

place with the Semantic Annotations for Web services Description Language

W3C working group [SAWSDL, 2006]. Following on the bottom-up approach

within the project, a composition framework MWSCF [Sivashanmugam et al.,

2005] has been developed, which uses the semantic descriptions for fulfilling

workflow-based processes automatically.

4 http://owlsm.projects.semwebcentral.org/
5 http://ivs.tu-berlin.de/Projekte/owlsplugin/

 46

Regarding SWS choreography and orchestration, similarly to WSMO we

follow the ASM formalism, but differ in the way we represent and handle the

semantic descriptions. IRS-III makes use of a forward-chaining-rule engine to

execute a choreography. The orchestration handler uses a Lisp interpreter to

execute the workflow-based orchestration. Other known standards for Web

services choreography are not easily comparable with our model because the

descriptions are syntactic. W3C glossary [W3C, 2004b], states simply that a Web

service choreography concerns the interaction of services with their users. The

Web service choreography Description Language (WS-CDL) describes the

behaviour observable from an external point of view, emphasizing collaboration

amongst interested parties, where the communication progresses only when

jointly agreed ordering rules are satisfied [Kavantzas, 2004]. Dijman and Dumas

[Dijman and Dumas, 2005] depict both static and dynamic aspects of the global

communication among heterogeneous Web services using Petri Nets.

11. CONCLUSIONS AND FUTURE WORK

Semantic Web services research has the overall vision of bringing the Web to its

full potential by enabling applications to be created automatically from available

Web services in order to satisfy user goals. Fulfilling this vision will radically

change the character of all online interaction including the nature of e-

Commerce, e-Science, e-Learning, and eGovernment. Key to achieving this

vision is the provision of SWS platforms able to support the development and use

of online libraries of re-usable software components indexed through generic and

domain specific ontologies. In this paper we have presented our SWS platform

IRS-III, which contains a suite of tools to enable the development and

management of semantic descriptions. Using the semantic Web service

descriptions, IRS-III, through orchestration, mediation and choreography

components, can broker between incoming goal requests and applicable Web

services. Also, IRS-III is to a large extent self-descriptive from the ability to use

semantic relations and internal goals during the brokering process.

 47

Further work is under way [Norton et al., 2007] in order to extend our

orchestration representation and integrate this with UML Activity Diagram based

workflows to facilitate automatic orchestration generation and take-up by the

general software developer community.

IRS-III also forms a significant input to the OASIS Semantic Execution

Environment standardisation process. Ongoing work involves both WSMX and

IRS-III and is focused on creating an OASIS standard execution environment for

semantic Web services [OASIS SEE TC, 2006].

Recently we have developed a plug-in which integrates IRS-III into WSMO

Studio [WSMO Studio, 2006], a WSMO compliant semantic Web service editor

available as a set of Eclipse plug-ins which facilitates reusability and extension

by third parties. The plug-in enables WSMO entities to be transparently

translated between WSML and OCML. Additionally, the plug-in allows users to

achieve goals through IRS-III using a simple point-and-click interface.

Over the past few years we have used IRS-III to create a number of SWS based

applications and we described our overall approach in this paper through an

application within the eGovernment domain which we created to support

emergency planning. Our application provides a simple interface, based on

Google Maps, and integrates GIS, meteorological, presence and ontology based

Web services.

Within a number of new EU funded projects we are currently creating

applications in the areas of: business process modelling, linking IRS-III to a

BPEL engine [BEA Systems et al., 2002] [SUPER, 2006]; e-learning, integrating

IRS-III with a learning object repository [LUISA, 2006]; and, bio-informatics,

describing Grid services related to the human musculo-skeletal system [LHDL,

2006]. The diversity of the domains in which we are able to deploy IRS-III is

evidence of the utility and robustness of our overall approach, and, we fully

expect to gain further valuable insights into the overall requirements for semantic

Web services during the deployment process. In this respect we welcome

external parties to use our platform - the IRS-III API and browser for can be

downloaded from the IRS-III Web site at http://kmi.open.ac.uk/projects/irs/.

 48

ACKNOWLEDGEMENTS

This work was supported by the DIP (Data, Information and Process Integration

with Semantic Web Services) project. DIP (FP6 - 507483) was an Integrated

Project funded under the European Union’s IST programme.

The authors gratefully acknowledge the members of the DIP project and the

WSMO working group for their insightful comments on our work.

REFERENCES

AMAZON. 2006. Available from http://www.amazon.com/gp/browse.html/104-6906496-
9857523?%5Fencoding=UTF8&node=3435361/.

BEA SYSTEMS, IBM CORPORATION, MICROSOFT CORPORATION., SAP AG, SIEBEL SYSTEMS. 2002. Business
Process Execution Language for Web Services. http://www.ibm.com/developerworks/webservices/library/ws-
bpel

BENJAMINS, V.R., PLAZA, E., MOTTA, E., FENSEL, D., STUDER, R., WIELINGA, B., SCHREIBER, G., AND
ZDRAHAL, Z. 1998. IBROW3 - An Intelligent Brokering Service for Knowledge-Component Reuse on the
World Wide Web. In Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-Based System
Workshop (KAW98), Banff, Canada, April 1998.

BERNERS-LEE, T., HENDLER, J. AND LASSILA, O. 2001. The Semantic Web. Scientific American, 284 (4), 34-43.
BÖRGER, E. 1998. High Level System Design and Analysis Using Abstract State Machines. In proceedings of

the International Workshop on Current Trends in Applied Formal Method: Applied Formal Methods, 1-43.
BURSTEIN, M. BUSSLER, C., ZAREMBA, M., FININ, T., HUHNS, M.N., PAOLUCCI, M., SHETH, A.P., WILLIAMS, S.

2005. A Semantic Web Services Architecture. IEEE Internet Computing, Vol. 9 , 5, 72 – 81.
CABRAL, L. AND DOMINGUE, J. 2005. Mediation of Semantic Web Services in IRS-III. In Proceedings of the

International Conference on Service Oriented Computing (ICSOC 2005), Amsterdam, The Netherlands.
CABRAL, L., DOMINGUE, J., GALIZIA, S., GUGLIOTTA, A., NORTON, B., TANASESCU, V., PEDRINACI, C. 2006.

IRS-III: A Broker for Semantic Web Services based Applications. In Proceedings of the 5th International
Semantic Web Conference, Athens, USA, November, 2006.

CLOCKSIN, W.F. AND MELLISH, C.S. 1984. – Programming in Prolog. Springer-Verlag New York, Inc. New
York, NY, USA.

CRUBEZY, M., MOTTA, E., LU, W. AND MUSEN, M. 2002. Configuring Online Problem-Solving Resources with
the Internet Reasoning Service. IEEE Intelligent Systems, 2, 34-42.

DE GREEF, P. AND BREUKER, J. 1992. Analysing system-user cooperation in KADS. Knowledge Acquisition,
Special issue: The KADS approach to knowledge engineering 4(1), 89-108.

DIJKMAN, R. AND DUMAS, M. 2004. Service-Oriented Design: A Multi-Viewpoint Approach. International
Journal of Cooperative Information Systems, 13(4): 337-368, 2004.

DIP. 2004. Data, Information, and Process Integration with Semantic Web Services,
http://dip.semanticweb.org/.

DOMINGUE, J., CABRAL, L., GALIZIA, S., AND MOTTA, E. 2005a. A Comprehensive Approach to Creating and
Using Semantic Web Services, In Proceedings of the W3C Workshop on Frameworks for Semantics in Web
Service, Innsbruck, Austria, June 9-10, 2005.

DOMINGUE, J., CABRAL, L., HAKIMPOUR, F., SELL D., AND MOTTA, E. 2004. IRS-III: A Platform and
Infrastructure for Creating WSMO-based Semantic Web Services. In Proceedings of the Workshop on WSMO
Implementations (WIW 2004), Frankfurt, Germany, September 29-30, 2004, CEUR Workshop Proceedings,
ISSN 1613-0073. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-113/paper3.pdf.

DOMINGUE, J., GALIZIA, S., AND CABRAL, L. 2005b. Choreography in IRS-III- Coping with Heterogeneous
Interaction Patterns in Web Services, In Proceedings of the 4th International Semantic Web Conference
(ISWC 2005), November 6-10, 2005, Galway, Ireland.

DOMINGUE, J. AND MOTTA, E. 2000. Planet-Onto: From News Publishing to Integrated Knowledge
Management Support. IEEE Intelligent Systems Special Issue on Knowledge Management and Knowledge
Distribution over the Internet, (26-32).

DOMINGUE, J., ROMAN, D., AND STOLLBERG, M. 2005c. Web Service Modeling Ontology (WSMO) - An
Ontology for Semantic Web Services, Position paper at the W3C Workshop on Frameworks for Semantics in
Web Services, June 9-10, 2005, Innsbruck, Austria.

 49

DOMINGUE, J., STUTT, A., C MARTINS, M., TAN, J., PERTUSSON, H., MOTTA, E. 2003. Supporting Online
Shopping through a Combination of Ontologies and Interface Metaphors. International Journal of Human
Computer Studies, Vol.59, 5, (699 723).

DZBOR, M., MOTTA, E., DOMINGUE, J. 2007. Magpie: Experiences with supporting Semantic Web browsing.
Journal of Web Semantics, 2007.

DUPPLAW, D., DASMAHAPATRA, S., HU, B., LEWIS, P. AND SHADBOLT., N. 2004. Multimedia Distributed
Knowledge Management in MIAKT. In Proceedings of the Workshop on Knowledge Markup and Semantic
Annotation. , in conjunction with ISWC 2004, November 2004, Hiroshima, Japan.

FENSEL, D. AND BUSSLER, C. 2002. The web service modeling framework WSMF. Electronic Commerce
Research and Applications, 1(2):113–137, 2002.

FENSEL, D., LAUSEN, H., POLLERES, A., DE BRUIJN, J., STOLLBERG, M., ROMAN, D., DOMINGUE, J. 2006.
Enabling Semantic Web Services: Web Service Modeling Ontology. Springer, 2006.

FENSEL, D. AND MOTTA, E. 2001. Structured Development of Problem Solving Methods, IEEE Transactions on
Knowledge and Data Engineering, 13(6), 9131-932.

FORGY, C.L. 1981. OPS5 User's Manual, Technical Report CMU-CS-81-135, Carnegie Mellon University,
1981.

EISENSTADT, M., KOMZAK, J. AND DZBOR, M. 2003. Instant messaging + maps = powerful collaboration tools
for distance learning. In Proceedings of TelEdu ’03, Havana, Cuba, 17-22 May 2003.

GALIZIA, S., AND DOMINGUE, J. 2004. Towards a Choreography for IRS-III. In Proceedings of the Workshop on
WSMO Implementations (WIW 2004), Frankfurt, Germany, September 29-30, 2004, CEUR Workshop
Proceedings, ISSN 1613-0073. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-
113/paper7.pdf.

GANGEMI, A., GUARINO, N., MASOLO, C., OLTRAMARI, A., SCHNEIDER, L. 2002. Sweetening ontologies with
DOLCE. In Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge
Management (EKAW02), Siguenza, Spain, October, 2002.

GOOGLE . 2005. Google Web APIs http://www.google.com/apis/index.html/.
GRUBER, T. R. 1993. A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition,

5(2).
GRUBER, T. R., AND OLSEN, G. R. 1994. An ontology for engineering mathematics. In Proceedings of Fourth

International Conference on Principles of Knowledge Representation and Reasoning, Gustav Stresemann
Institut, Bonn, Germany, May 24-27, 1994.

HAGEL, J., DURCHSLAG, S. AND SEELY BROWN, J. 2002. Orchestrationg Loosely Coupled Business Processes:
The Secret to Successful Collaboration. http://www.johnhagel.com/paper_orchestratingcollaboration.pdf

HAKIMPOUR, F., DOMINGUE, J., MOTTA, E., CABRAL, L. AND LEI, Y. 2004. Integration of OWL-S into IRS-III,
In Proceedings of the first AKT Workshop on Semantic Web Services.

HAVANTZAS, G., BURDETT, D., RITZINGER, G., FLETCHER, T. AND LAFON, Y., BARRETO, C. 2005. Web Service
Choreography Description Language Version 1.0. W3C Working Draft 17 December 2004. (Available at
http://www.w3.org/TR/ws-cdl-10/).

KELLER, G., NÜTTGENS, M., AND SCHEER, A. W. 1992. Semantische Prozessmodellierung auf der Grundlage
Ereignisgesteuerter Prozessketten (EPK). Technical Report Veröffentlichungen des Instituts für
Wirtschaftsinformatik (IWi), Heft 89. Universität des Saarlandes, January 1992.

LASSILA, O. 2001. Enabling Semantic Web Programming by Integrating RDF and Common Lisp. In
Proceedings of the First Semantic Web Working Symposium. Stanford University, 2001.

LHDL. 2006. Living Human Digital Library, http://www.livinghuman.org/.
LUISA. 2006. Learning Content Management System Using Innovative Semantic Web Services Architecture,

http://luisa.atosorigin.es/.
JABBER. 2006. Jabber SoftwareFoundation. http://www.jabber.org/.
MARK., D. 1989. Cognitive Image-Schemata for Geographic Information: Relations to User Views and GIS

Interfaces. In Proceedings of GIS/LIS ’89 (pp. 551–560), Orlando, Florida, 1989.
MEDJAHED, B. 2005. A Multilevel Composability Model for Semantic Web Services. IEEE Transactions on

Knowledge and Data Engineering, 17(7), 954 – 968, July 2005.
MEDJAHED, B. AND BOUGUETTAYA, A. 2005. Customized Delivery of E-Government Web Services. IEEE

Intelligent Systems, 20(6), December 2005.
METEOR-S. 2006. METEOR-S: Semantic Web Services and Processes.

http://lsdis.cs.uga.edu/projects/meteor-s/.
MIAKT. 2002. Medical Imaging and Advanced Knowledge Technologies, http://www.aktors.org/miakt/.
MOTTA, E. 1998. An Overview of the OCML Modelling Language, In Proceedings of the 8th Workshop on

Knowledge Engineering Methods and Languages (KEML '98).
MOTTA, E., DOMINGUE, J., CABRAL, L., AND GASPARI, M. 2003. IRS-II: A Framework and Infrastructure for

Semantic Web Services. In Proceedings of the 2nd International Semantic Web Conference (ISWC2003,) 20-
23 October 2003, Sundial Resort, Sanibel Island, Florida, USA.

NORTON, B. 2007. Reasoning About Behaviour on the Semantic Web. In Proceedings on Programming
Paradigms for the Web: Web Programming and Web Services, Dagstuhl, Germany (to appear).

 50

NORTON, B. PEDRINACI, C., HENOCQUE, L. AND KLEINER M. 2007. 3-Level Behavioural Models for Semantic
Web Services. Special issue of Multi-Agent and Grid Systems. (to appear).

OASIS, SEE TC. 2006. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=semantic-ex/.
OMG. 2002. The Object Management Group: Meta-Object Facility, version 1.4, 2002. Available at

http://www.omg.org/technology/documents/formal/mof.htm.
OWL. 2004. OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-features/.
OWL-S. 2006. OWL-S 1.2 Pre-Release, (http://www.ai.sri.com/daml/services/owl-s/1.2/).
OWL-S TOOLS. 2006. http://www.daml.org/services/owl-s/tools.html.
PAOLUCCI, M., ANKOLEKAR, A., SRINIVASAN, N. AND SYCARA, K. 2003. The DAML-S Virtual Machine, In

Proceedings of the Second International Semantic Web Conference (ISWC), 2003, Sandial Island, Fl, USA,
October 2003, 290-305.

PATIL, A., OUNDHAKAR, S., SHETH, A. AND VERMA, K. 2004. METEOR-S Web service Annotation
Framework, Proceedings of the Thirteenth International World Wide Web Conference (WWW2004), May,
2004, 553-562.

RDF. 2004. RDF Primer. http://www.w3.org/TR/rdf-primer/.
RDF SCHEMA. 2004. RDF Vocabulary Description Language 1.0: RDF Schema. http://www.w3.org/TR/rdf-

schema/.
RIVA, A. AND RAMONI, M. 1996. LispWeb: A Specialised HTTP Server for Distributed AI Applications.

Computer Networks and ISDN Systems, 28, 7-11, 953-961.
SAWSDL. 2006. Semantic Annotations for Web Services Description Language Working Group.

http://www.w3.org/2002/ws/sawsdl/.
SHI, X. AND JAGANNATHAN, V. 2005. Rebuilding the Semantic Web Service Architecture, Proceedings of the

2nd international workshop on semantic and dymanic Web processes (SDWP 2005), in conjunction with the
International Conference on Web Services (ICWS 2005), Orlando, Florida, USA, July 11-15 2005.

SIVASHANMUGAM, K., MILLER, J.A., SHETH AND VERMA, K. 2005. Framework for Semantic Web Process
Composition. International Journal of Electronic Commerce, 9(2), 71-106.

SRINIVASAN, N., PAOLUCCI, M. AND SYCARA, K. 2006. Semantic Web Service Discovery in the OWL-S IDE.
In proceedings of Hawaii International Conference on System Sciences (HICSS 2006), Hyatt Regency Kauai,
Hawaii, January 4-6, 2006.

SOAP. 2003. SOAP Version 1.2 Part 0: Primer, (http://www.w3.org/TR/soap12-part0/).
STOLLBERG, M. AND NORTON, B. 2007. A Refined Goal Model for Semantic Web Services. In Proc. of the 2nd

International Conference on Internet and Web Applications and Services (ICIW 2007), Mauritius, 2007.
SUPER. 2006. Semantics Utilised for Process management within and between EnteRprises, http://www.ip-

super.org/.
SWSF. 2005. Semantic Web Services Framework, http://www.daml.org/services/swsf/.
SWSI. 2006. The Semantic Web Services Initiative (SWSI), http://www.swsi.org/.
TANASESCU, V., GUGLIOTTA, A., DOMINGUE, J., VILLARÍAS, L., DAVIES, R., ROWLATT, M., RICHARDSON, M.,

AND STINCIC, S. 2007. Geospatial Data Integration with Semantic Web Services: the eMerges Approach, The
Geospatial Web, eds. Arno Scharl, Klaus Tochtermann, Springer.

UDDI. 2003. UDDI Spec Technical Committee Specification v. 3.0, http://uddi.org/pubs/uddi-v3.0.1-
20031014.htm.

W3C. 2004a. Web Services Architecture, http://www.w3.org/TR/ws-arch/.
W3C. 2004b. Web Services Glossary. W3C Working Group Note. 11 February 2004 (Available at

http://www.w3.org/TR/ws-gloss/).
WSDL. 2001. Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/2001/NOTE-wsdl-

20010315.
WSML. 2005. The Web Service Modeling Language WSML, http://www.wsmo.org/TR/d16/d16.1/v0.3/.
WSMO. 2007. Web Service Modeling Ontology (WSMO), http://www.wsmo.org/TR/d2/v1.4/.
WSMO STUDIO. 2006. http://www.wsmostudio.org/.
WSMX. 2005. Overview and Scope of WSMX, http://www.wsmo.org/TR/d13/d13.0/v0.2/.

 51

APPENDICES

Appendix I. The Toplevel Concepts in the IRS-III Service Ontology

Appendix I contains a number of the main toplevel definitions for the service

ontology including definitions related to the concepts of goal, Web service and

mediator.
(def-class meta-invokable-entity () ?
 :iff-def (or (

x
= ?x invokable-entity)

 (subclass-of ?x invokable-entity)))

(def-class invokable-entity ()
 "Captures the input and output roles which are used within goals and Web
services."
 ((has-input-role :type role)
 (has-output-role :type role)))

(def-class meta-wsmo-entity () ?x
 :iff-def (or (= ?x wsmo-entity)
 (subclass-of ?x wsmo-entity)))

(def-class wsmo-entity ()
 ((has-non-functional-properties :type non-functional-properties)))

(def-class effect (unary-kappa-expression))

(def-class pre-condition (unary-kappa-expression))

(def-class post-condition (unary-kappa-expression))

(def-class assumption (unary-kappa-expression))

(def-class meta-goal () ?x
 :iff-def (or (= ?x goal)
 (subclass-of ?x goal)))

(def-class goal (wsmo-entity invokable-entity)
 ((used-mediator :type meta-mediator)
 (has-post-condition :type post-condition)
 (has-effect :type effect)))

(def-class meta-capability () ?x
 :iff-def (or (= ?x capability)
 (subclass-of ?x capability)))

(def-class capability (wsmo-entity)
 ((used-mediator :type meta-wg-oo-mediator)
 (has-pre-condition :type pre-condition)
 (has-post-condition :type post-condition)
 (has-assumption :type assumption)
 (has-effect :type effect)))

(def-class meta-web-service () ?
 :iff-def (or (

x
= ?x web-service)

 (subclass-of ?x web-service)))

(def-class web-service (invokable-entity wsmo-entity)
 ((has-capability :type meta-capability)

 52

 (has-interface :type meta-interface)
 (used-mediator :type meta-oo-mediator)))

(def-class meta-interface () ?x
 :iff-def (or (= ?x interface)
 (subclass-of ?x interface)))

(def-class interface (wsmo-entity)
 ((has-choreography :type meta-choreography)
 (has-orchestration :type meta-orchestration)
 (used-mediator :type meta-oo-mediator)))

(def-class meta-mediator () ?
 :iff-def (or (

x
= ?x mediator)

 (subclass-of ?x mediator)))

(def-class mediator (wsmo-entity)
 ((has-source-component :type meta-wsmo-entity)
 (has-target-component :type meta-wsmo-entity)
 (has-mapping-rules :type mapping-rules)
 (has-mediation-service :type meta-mediation-service)))

(def-class meta-wg-mediator (meta-mediator) ?x
 :iff-def (or (= ?x wg-mediator)
 (subclass-of ?x wg-mediator)))

(def-class wg-mediator (mediator)
 ((has-source-component :type meta-web-service-or-wg-mediator)
 (has-target-component :type meta-goal
 (

-or-wg-mediator)
used-mediator :type meta-oo-mediator)))

(def-class meta-gw-mediator (meta-mediator) ?x
 :iff-def (or (= ?x gw-mediator)
 (subclass-of ?x gw-mediator)))

(def-class gw-mediator (mediator)
 ((has-source-component :type meta-goal-or-gw-mediator)
 (has-target-component :type meta-web-service-or-gw-mediator)
 (used-mediator :type meta-oo-mediator)))

(def-class meta-ww-mediator (meta-mediator) ?x
 :iff-def (or (= ?x ww-mediator)
 (subclass-of ?x ww-mediator)))

(def-class ww-mediator (mediator)
 ((has-source-component :type meta-web-service-or-ww-mediator)
 (has-target-component :type meta-web-service-or-ww-mediator)
 (used-mediator :type meta-oo-mediator)))

(def-class meta-gg-mediator (meta-mediator) ?x
 :iff-def (or (= ?x gg-mediator)
 (subclass-of ?x gg-mediator)))

(def-class gg-mediator (mediator)
 ((used-mediator :type meta-oo-mediator)
 (has-source-component :type meta-goal-or-gg-mediator)
 (has-target-component :type meta-goal-or-gg-mediator)))

(def-class meta-oo-mediator (meta-mediator) ?x
 :iff-def (or (= ?x oo-mediator)
 (subclass-of ?x oo-mediator)))

(def-class oo-mediator (mediator)
 ((has-source-component :type meta-oo-mediator)))

 53

(def-class meta-wg-or-oo-mediator (meta-mediator) ?x
 :iff-def (or (= ?x wg-or-oo-mediator)
 (subclass-of ?x wg-or-oo-mediator)))

(def-class wg-or-oo-mediator (mediator) ?x
 :iff-def (or (oo-mediator ?x)
 (wg-mediator ?x)))

(def-class meta-goal-or-gg-mediator (meta-mediator) ?x
 :iff-def (or (= ?x goal-or-gg-mediator)
 (subclass-of ?x goal-or-gg-mediator)))

(def-class goal-or-gg-mediator (meta-mediator) ?x
 :iff-def (or (goal-mediator ?x)
 (gg-mediator ?x)))

(def-class meta-web-service-or-ww-mediator (meta-mediator) ?x
 :iff-def (or (= ?x web-service-or-ww-mediator)
 (subclass-of ?x web-service-or-ww-mediator)))

(def-class web-service-or-ww-mediator (mediator) ?x
 :iff-def (or (web-service ?x)
 (ww-mediator ?x)))

(def-class meta-mediation-service () ?x
 :iff-def (or (meta-goal ?x) (meta-web-service ?x)))

(def-class mediation-service () ?x
 :iff-def (or (goal ?x) (web-service ?x)))

 54

Appendix II. A Subset of the Main Relations in the IRS-III Service

Ontology

Appendix II contains a small portion of the main relations within the IRS-III

service ontology. These relations are used by IRS-III components to manipulate

user definitions of goals, mediators and Web services which are classes. Hence

the relations below make use of the meta-class definitions within Appendix I.
(def-relation has-wsmo-input-role (?thing ?role)
 :sufficient
 (or (and (instance ?thing)
 (has-wsmo-input-role (the-parent ?thing) ?role))
 (and (class ?thing)
 (or
 (and
 (meta-invokable-entity ?thing)
 (member ?role (all-class-slot-values
 ?thing has-input-role)))
 (and (meta-web-service ?thing)
 (associated-goal ?thing ?goal-type)
 (has-wsmo-input-role ?goal-type ?role))))))

 (def-relation associated-goal (?web-service ?goal)
 :sufficient
 (or (and (instance ?web-s
 (

ervice)
associated-goal (the-parent ?web-service) ?goal))

 (and (meta-web-service ?web-service)
 (= ?capability (the-class-slot-value ?web-service has-
capability))
 (meta-capability ?capability)
 (= ?mediator (the-class-slot-value ?capability used-mediator))
 (meta-mediator ?mediator)
 (= ?goal (the-class-slot-value ?mediator
 has-source-component))
 (meta-goal ?goal))
 (and (meta-mediator ?mediator)
 (= ?web-service (the-class-slot-value ?mediator
 has-target-component))
 (meta-web-service ?web-service)
 (= ?goal (the-class-slot-value ?mediator
 has-source-component))
 (meta-goal ?goal))))

(def-relation applicable-to-goal (?web-service-class ?goal-inst)
 :iff-def (or (not (and (= ?capability
 (the-class-slot-value ?web-service-class has-
capability))
 (meta-capability ?capability)
 (= ?exp (the-class-slot-value ?capability has-
assumption))
 (not (= ?exp :nothing))))
 (and (= ?capability
 (the-class-slot-value ?web-service-class has-
capability))
 (meta-capability ?capability)
 (= ?exp (the-class-slot-value ?capability has-
assumption))
 (not (= ?exp :nothing))
 (holds ?exp ?goal-inst))))

 55

(def-procedure instantiate-web-service

(?goal-inst ?web-service-type)
 :body (in-environment
 ((?name . (new-symbol ?web-service-type)))
 (tell (append (list-of ?web-service-type ?name) nil))
 (tell (suitable-web-service ?goal-inst ?name))
 ?name))

(def-relation can-solve-goal (?goal ?thing)
 :sufficient."
 (or (and (instance ?goal
 (

)
can-solve-goal (the-parent ?goal) ?thing))

 (and (meta-web-service ?thing)
 (= ?capability (the-class-slot-value ?thing has-capability))
 (meta-capability ?capability)
 (= ?mediator (the-class-slot-value ?capability used-mediator))
 (meta-mediator ?mediator)
 (= ?goal (the-class-slot-value ?mediator
 has-source-component)))))

 56

Appendix III. A Portion of the IRS-III Service Ontology for Internal

Components
(def-class internal-goal (goal))

(def-class internal-mediator (mediator))

(def-class internal-capability (capability))

(def-class internal-web-service (web-service)

((has-internal-method :type symbol)))

(def-class suitable-web-service-goal (internal-goal)
 ((has-input-role
 :value

has-goal :value has-actual-role-pairs

 :value has-web-service :value has-combined-oo-mediator-ontology)
 (has-input-soap-binding
 :value (has-goal "sexpr")
 :value (has-actual-role-pairs "sexpr")
 :value (has-web-service "sexpr")
 :value (has-combined-oo-mediator-ontology "sexpr"))
 (has-output-role
 :value has-goal-and-web-service-instances)
 (has-goal-and-web-service-instances :type list)
 (has-output-soap-binding
 :value (has-goal-and-web-service-instances "sexpr"))
 (has-goal :type goal-type)
 (has-actual-role-pairs :type list)
 (has-web-service :type meta-web-service)
 (has-combined-oo-mediator-ontology :type ontology)
 (has-post-condition
 :value
 (kappa (?goal)
 (is-suitable-for-goal
 (instantiate (has-role-value ?goal has-goal)
 (has-role-value ?goal has-actual-role-pairs))
 (has-role-value ?goal has-web-service))))))

(def-class suitable-web-service-mediator (wg-mediator)
 ((has-source-component :value suitable-web-service-goal)))

(def-class suitable-web-service-web-service (internal-web-service)
 ((has-internal-method :value suitable-web-service-internal-method)
 (has-capability :value suitable-web-service-capability)))

(def-class suitable-web-service-capability (capability)
 ((used-mediator :value suitable-web-service-mediator)))

(def-class find-web-services-for-goal (internal-goal)
 ((has-input-role :value has-goal :value has-ontology)
 (has-input-soap-binding
 :value (has-goal "sexpr")
 :value (has-ontology "sexpr"))
 (has-output-role :value associated-web-services)
 (associated-web-services :type list)
 (has-output-soap-binding
 :value (associated-web-services "sexpr"))
 (has-goal :type meta-goal)
 (has-ontology :type ontology)
 (has-post-condition
 :value
 (kappa (?goal)
 (and (member ?web-service
 (has-role-value ?goal associated-web-services))

 57

 (can-solve-goal
 (has-role-value ?goal has-goal) ?web-service))))))

(def-class find-web-services-for-goal-mediator (wg-mediator)
 ((has-source-component :value find-web-services-for-goal)))

(def-class find-web-services-for-goal-web-service (internal-web-service)
 ((has-internal-method :value web-services-which-solve-goal-internal-
method)
 (has-capability :value find-web-services-for-goal-web-service-
capability)))

(def-class find-web-services-for-goal-web-service-capability (capability)

((used-mediator :value find-web-services-for-goal-mediator)))

