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1. Introduction

Suppose one has a set of univariate time series generated by one or more unknown processes.
The problem we wish to solve is to discover the most probable set of processes generating
the data by clustering time series into groups so that the elements of each group have similar
dynamics. For example, if a batch of time series represents sensory experiences of a mobile
robot, clustering by dynamics might find clusters corresponding to abstractions of sensory
inputs [23]. Sound patterns can be clustered by their dynamics, also, and this is one way
to discover patterns corresponding to words in the speech signal [16].

The method presented in this chapter transforms each time series into a Markov Chain
(MC) and then clusters time series generated by the same MCs. A MC represents a dynamic
process as a transition probability matrix. If we regard each time series as being generated
by a stochastic variable, we can construct a transition probability matrix for each observed
time series. Each row and column in the matrix represents a state of the stochastic variable,
and the cell values are the probabilities of transition from one state to each other state of
this variable in the next time step. A transition probability matrix is learned for each
time series in a training batch of time series. Next, a Bayesian clustering algorithm groups
time series that produce similar transition probability matrices. The task of the clustering
algorithm is two-fold: to find the set of clusters that gives the best partition of time series
according to some measure, and to assign each time series to one cluster.

Clustering can be simply a matter of grouping objects together so that the average
similarity of a pair of objects is higher when they are in the same group and low when they
are in different groups. Numerous clustering algorithms have been developed along this
principle (see [8] for a survey). Our algorithm, called Bayesian Clustering by Dynamics
(BCD), does not use a measure of similarity between MCs to decide if two time series need
to belong to the same cluster but it uses a different principle: Both the decision of whether
to group time series and the stopping criterion are based on the posterior probability of
the clustering, that is, the probability of the clustering conditional on the data observed.
In other words, two time series are assigned to the same cluster if this operation increases
the posterior probability of the clustering, and the algorithm stops when the posterior
probability of the clustering is maximum. Said in yet another way, BCD solves a Bayesian
model selection problem, where the model it seeks is the most probable partition of time
series given the data. To increase efficiency, the algorithm uses an entropy-based heuristic
and performs a hill-climbing search through the space of clusterings, so it yields a local-
maximum posterior probability clustering.

The algorithm produces a set of clusters, where each cluster is identified by a MC es-
timated from the time series grouped in the cluster. Given the model-based probabilistic
nature of the algorithm, clusters induced from the batch of time series have a probability
distribution which can be used for reasoning and prediction so that, for example, one can
detect cluster membership of a new time series or forecast future values.
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Figure 1: Plot of three time series

Although a Mc is a very simple description of a dynamic process, BCD has been applied
successfully to cluster robot experiences based on sensory inputs [29, 23], simulated war
games [30], as well as the behavior of stocks in market and automated learning and genera-
tion of Bach’s counterpoint. A conjecture of the success of the algorithm is that describing
a dynamic process as a MC can be enough to capture the common dynamics of different
time series without resorting to complex models as, for example, Hidden Markov models
[21].

The reminder of this chapter is organized as follows. We describe BCD in Section 2.
Section 3 shows how to make classification and prediction with clusters of dynamics. An
application of the algorithm to cluster robot sensory inputs is in Section 4. Section 5
describes related and future work and conclusions are in the last section of this chapter.
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2. Bayesian Clustering by Dynamics

Suppose we are given a batch of m time series that record the values 1,2, ..., s of a variable
X. Counsider, for example, the plot of three time series in Figure 1. Each time series
records the values of a variable with five states — labeled 1 to 5 — in 50 time steps. It is
not obvious that the three time series are observations of the same process. However, when
we explore the underlying dynamics of the three series more closely, we find, for example,
that state 2 is frequently followed by state 1, and state 3 is followed disproportionately often
by state 1. We are interested in extracting these types of similarities among time series to
identify time series that exhibit similar dynamics. To cluster time series by their dynamics,
we model time series as MCs. For each time series, we estimate a transition matrix from
data and then we cluster similar transition matrices.

2.1 Learning Markov Chains

Suppose we observe a time series S = (zg, €1, 2, ..., Ly—1, Ly, -.), where each z; is one of the
states 1,...,s of a variable X. The process generating the sequence S is a first order mcC if
the conditional probability that the variable X visits state j at time ¢, given the sequence
(zo, 21, %2, ..., Ty—1), is only a function of the state visited at time ¢ —1 [27]. Hence, we write

p(Xt = j|($0,$1,$2, --th—l)) :p(Xt = j|xt—1)a

with X; denoting the variable X at time ¢. In other words, the probability distribution of
the variable X at time t is conditionally independent of the values (xg, x1, x2, ..., 4—2), once
we know ;1. This conditional independence assumption allows us to represent a MC as a
vector of probabilities pg = (po1, Po2, ---» Pos ), denoting the distribution of X (the initial state
of the chain) and a matrix P of transition probabilities, where p;; = p(X; = j|X;—1 = 19),
so that

Xy
X1 1 2 e s
1 P11 P12 - DPis
P=pij)= 2 P21 P22t P2
S DPs1t Ds2 -  Dss

Given a time series generated by a MC, we wish to estimate the probabilities p;; of state
transitions (1 — j) = (X;—1 =1 — Xy = j) from the data. This is a well known statistical
estimation problem whose solution is to estimate p;; as n;j/n;, where n; = Zj ni; and ng; is
the frequency of the transitions (i — j) observed in the time series [2]. Briefly, the estimate
is found in this way:
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1. First, we need to identify the sampling model, that is, the probability distribution from
which the observed data were generated. Typically, the sampling model is known up
to a vector of unknown parameters 6, which we wish to estimate from the data. In
our problem, the sampling model is the transition probability matrix P, which is a set
of independent discrete distributions, one for each row of P. The vector of parameter
6 is given by the set of conditional probabilities (p;;).

2. The sample data S and the sampling model allow us to write down the likelihood
function p(S|0): The probability of the data given the sampling model and 6. Since
data are observed, p(S|6) is only a function of # and we estimate 6 by finding the
value which maximizes the likelihood function. This procedure returns the Mazimum
Likelihood estimate of 8 and, hence, the parameter value that makes the observed data
most likely.

The assumption that the generating process is a MC implies that transitions from state ¢ of
the variable X are independent of transitions from any of the other states of the variables.
Therefore, rows of the transition probability matrix P are independent distributions. Data
relevant to the ith row distribution are the n; transitions (i — j), for any j, observed
in the time series and the probability of observing the transitions (i — 1), ---, (i — )
with frequencies n;1, - -+, n;s is []; p?j“ . A discrete random variable with probability mass
function proportional to []; p%” has a multinomial distribution [2]. By independence, the
likelihood function is the product:

S S
p(810) = IT I »i’ (1)
i=1j=1
and depends on the data only via n;;. Maximization of p(S|0), with the constraint that
Zj pij = 1, for all 4, returns the estimate p;; = ng;/n;.

This estimate uses only the observed data while one may have some prior information
about a MC that one wishes to take into account during the estimation of §. A Bayesian
approach provides a formal way to use both prior information and data to estimate 6. This
is achieved by regarding 0 as a random variable, whose density p(6) encodes prior knowledge.
Data are used to update the prior density of € into the posterior density p(6|S) by Bayes’
Theorem:

p(510)p(0)

p(S)
and the estimate of 6 is the posterior expectation of 6 [22].

To choose the prior, we suppose we have some background knowledge that can be
represented in terms of a hypothetical time series of length o — s? + 1 in which the o — s?

p(0]S) =
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1 2 3 4 5 1 2 3 4 S
1 3 12 3 0 3 1 0.15 0.55 0.15 0.01 0.15
N— 2 1 1 2 2 0 N H_ 2 0.66 0.07 0.13 0.13 0.01
3 6 0 0 0 1 3 0.78 0.03 0.03 0.03 0.15
4 0 0 2 0 0 4 0.07 0.07v 0.73 0.07 0.07
5 0 4 0 0 O 5 0.04 0.84 0.04 0.04 0.04

Table 1: Observed and learned transition matrices for the first time series in Figure 1.

transitions are divided into «;; — 1 transitions of type (i — j). This background knowledge
gives rise to a s X s contingency table, homologous to the frequency table, containing
these hypothetical transitions a;; — 1 that are used to formulate a conjugate prior! with

density function p(0) o [[;—; II; p?jirl. This is the density function of s independent

j=1
Dirichlet distributions, with hyper-parameters «;;. Each Dirichlet distribution is a prior to
the parameters p;1, - - -, p;s associated with the sth row conditional distribution of the matrix

P. Standard notation denotes one Dirichlet distribution associated with the conditional
probabilities (p;1, .., pis) by D(e1, ..., a;s). The distribution given by independent Dirichlet
is called a Hyper-Dirichlet distributions by Dawid and Lauritzen [5] and it is commonly used
to model prior knowledge in Bayesian networks [31]. We will denote such a Hyper-Dirichlet
distribution by HD(c;j)s, where the index s denotes the number of independent Dirichlet
distributions defining the Hyper-Dirichlet.

By letting «; denote };;j, this prior distribution assigns probability «;; /i to the
transition (¢ — j), with variance (ay;/a;)(1—cyj/a;)/(ci+1). For fixed o;/a;, the variance
is a decreasing function of «; and, since small variance implies a large precision about the
estimate, «; is called the local precision about the conditional distribution (p;1, - - -, pis) and
indicates the level of confidence about the prior specification. The quantity a = ) ; «; is the
global precision, as it accounts for the level of precision of all the s conditional distributions
defining the sampling model. We note that, when «; is constant, o;;/a; = 1/s so that all
transitions are supposed to be equally likely. Priors with this hyper-parameter specification
are known as symmetric priors [10].

A Bayesian estimation of the probabilities p;; is the posterior expectation of p;;. By
conjugate analysis [22], the posterior distribution of € is still Hyper-Dirichlet with updated
hyper-parameters «;; 4+ n;; and the posterior expectation of p;; is

L Qg
o; +n;

(2)

Dij =

Equation 2 can be rewritten as

LA prior distribution is said to be conjugate when it has the same functional form as the likelihood
function
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Figure 2: Markov Chain induced from data.

g — -
o; Q; +n; n; oG +n;

(3)
which shows that p;; is an average of the estimate n;;/n; and of the quantity «;;/c;, with
weights depending on «; and n;. When n; > «;, the estimate of p;; is approximately n;;/n;,
and the effect of the prior is overcome by data. However, when n; < «;, the prior plays a
role. In particular, the Bayesian estimate 2 is never 0 when n;; = 0.

Table 1 reports the frequencies of transition n;; 4,7 = 1,...,5 observed in the first
time series in Figure 1 and the learned transition matrix when the prior global precision
is @ = 5 and o;; = 1/5. The matrix P describes a dynamic process characterized by
frequent transitions between states 1, 2 and 3 while states 4 and 5 are visited rarely. Note
that although the observed frequency table is sparse, as 14 transitions are never observed,
null frequencies of some transitions do not induce null probabilities. The small number of
transitions observed from state 3 (ng = 7), state 4 (n4s = 2) and state 5 (n5 = 4) do not
rule out, for instance, the possibility of transitions from 3 to either 2, 3 or 4. A summary
of the essential dynamics is in Figure 2 in which double headed paths represent mutual
transitions. Transitions with probability smaller than 0.05 are not represented.




Sequence Learning via Bayesian Clustering by Dynamics
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Figure 3: Three models corresponding to different re-labeling of a data set of four time
series.

2.2 Clustering

The second step of the learning process is an unsupervised agglomerative clustering of time
series on the basis of their dynamics. The available data is a set S = {.S;} of m time series
and the task of the clustering algorithm is two-fold: finding the set of clusters that gives the
best partition of the data and assigning each time series .S; to one cluster, without fixing
the number of clusters in advance.

Formally, clustering is done by regarding a partition as a discrete variable C' with states
Ci,...,C. that are not observed. Each state C} of the variable C' labels, in the same way,
time series generated by the same MC with transition probability matrix P and, hence, it
represents a cluster of time series. The number ¢ of states of the variable C' is unknown but
it is bounded above by the total number of time series in the data set S: The maximum
number of clusters is obtained when each time series is generated by a different MC. Thus,
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initially, each time series has its own label. The clustering algorithm then tries to relabel
those time series that are likely to have been generated by the same MC and thus merges the
initial states C', ..., Cy, into a subset C1, ..., C., with ¢ < m. Figure 3 provides an example
of three different relabelings of a data set S of four time series. Each relabeling determines a
model so that, for example, model M; is characterized by the variable C' having three states
C1, Cy and (3 with C] labeling time series S; and Sy, Co labeling S3 and Cs labeling Sy.
In models My and M3, the variable C' has only two states but they correspond to different
labeling of the time series and hence different clusters.

The specification of the number ¢ of states of the variable C' and the assignment of one
of its states to each time series S; define a statistical model M,. Thus, we can regard the
clustering task as a Bayesian model selection problem, in which the model we are looking for
is the most probable way of re-labeling time series, given the data. We denote by p(M,) the
prior probability of each model M, and then we use Bayes’ Theorem to compute its posterior
probability, and we select the model with maximum posterior probability. The posterior
probability of M., given the sample S, is p(M.|S) x p(M.)p(S|M.) where p(S|M,) is the
marginal likelihood. This marginal likelihood differs from the likelihood function because it
is only a function of the model M., while the likelihood function depends on parameters
0 quantifying the model M,. Therefore, the marginal likelihood is computed by averaging
out the parameters from the likelihood function. We show next that, under reasonable
assumptions on the sample space, the adoption of a particular parameterization for the
model M. and the specification of a conjugate prior lead to a simple, closed-form expression
for the marginal likelihood p(S|M,).

Given a model M., that is, a specification of the number of states of the variable C' and
of the labeling of the original time series (or, equivalently, conditional on the specification
of ¢ clusters of time series), we suppose that the marginal distribution of the variable C'
is multinomial, with cell probabilities p, = p(C = Ci|0). We also suppose that the mCs
generating the time series assigned to different clusters C} are independent, given C, and
that time series generated by the same MC are independent. We denote by Py = (pyi;) the
transition probability matrix of the MC generating time series in cluster Cy and denote the
cell probabilities by pyi; = p(X¢|X;—1 = 4, Cy,0). Therefore, the overall likelihood function
is

C S
p(S10) = [ pi™* 11 Peiy’
k=1 ij=1
where ny;; denotes the observed frequency of transitions (¢ — j) observed in all time series
assigned to cluster Cg, and my is the number of time series that are assigned to cluster Cy.
Compared to Equation 1, the likelihood is a product of terms corresponding to each cluster
and each factor is weighted by the cluster probability p,"*. We now define a prior density
for 6 as a product of ¢ x s + 1 Dirichlet densities. One Dirichlet is the prior distribution
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assigned to (pg), say D(B1,...,0:). The other ¢ x s densities correspond to ¢ independent
Hyper-Dirichlet distribution HD(c;;)s, each distribution HD(ay;;)s being assigned to the
parameters py;; of the MC generating the time series in cluster C. The marginal likelihood
is then given by

p(SIM) = [ p(S10)p(6)do

and it is easy to show (by using the same integration techniques in [3]) that

S

_ F(B) Bk + mk = akz aklj + nkl])
p(S|MC) - F(B + m) kl;Il 121_[1 akz + nkl 1:[ akl])

where I'(-) denotes the Gamma function, ng; = 3, ng;; is the number of transitions from
state ¢ observed in cluster Cy, >, mr =m and 8 =), Bk.

Once the a posteriori most likely partition has been selected, the transition probability
matrix Py associated with the cluster C} can be estimated as

and the probability of C' = C} can be estimated as

ﬁ:m+m.
B+m

We conclude this section by suggesting a choice of the hyper-parameters ag;; and B;. We use
symmetric prior distributions for all the transition probabilities considered at the beginning
of the search process. The initial m x s X s hyper-parameters ay;; are set equal to «/(ms?)
and, when two time series are assigned to the same cluster and the corresponding observed
frequencies of transitions are summed up, their hyper-parameters are summed up. Thus,
the hyper-parameters of a cluster corresponding to the merging of my time series will be
mya/(ms?). An alternative solution is to distribute the initial precision « uniformly, across
clusters, so that the hyper-parameters of a model with ¢ clusters are «/(cs?). In both ways,
the specification of the prior hyper-parameters requires only the prior global precision «,
which measures the confidence in the prior model, and the marginal likelihood of different
model is a function of the same «. An analogous procedure can be applied to the hyper-
parameters () associated with the prior estimates of py. Empirical evaluations have shown
that the magnitude of the « value has the effect of zooming out differences between dynamics
of different time series, so that, increasing the value of & produces an increasing number of
clusters.
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2.3 A Heuristic Search

To implement the clustering method described in the previous section, we should search all
possible partitions and return the one with maximum posterior probability. Unfortunately,
the number of possible partitions grows exponentially with the number of time series and
a heuristic method is required to make the search feasible.

A good heuristic search could be to merge, or agglomerate, first pairs of time series
producing similar transition probability tables. What makes two tables similar? Recall
that each row of a transition probability table corresponds to a probability distribution
over states at time ¢ given a state at time t — 1. Let P, and P, be tables of transition
probabilities of two MCs. Because each table is a collection of s row conditional probability
distributions, rows with the same index are probability distributions conditional on the same
event. The measure of similarity that BCD uses is therefore an average of the Kulback-Liebler
distances between row conditional distributions. Let pi;; and pa;; be the probabilities of
the transition X; = j|X;—1 = ¢ in P; and P,. The Kulback-Liebler distance of the two
probability distributions in row i is D(p1;,p2) = 35— P1ijlog(p1ij/paij). The average
distance between P, and P, is then D(Py, Py) = Y, D(p1i, p2i)/s.

Iteratively, BCD computes the set of pairwise distances between the transition probability
tables, sorts the generated distances, merges the two time series with closest transition
probability tables and evaluates the result. The evaluation asks whether the resulting
model M., in which two time series are assigned to the same cluster is more probable than
the model M, in which these time series are generated by different MCs, given the data
S. If the probability p(M,|S) is higher than p(M;|S), BCD updates the set of transition
probability tables by replacing them with the table resulting from their merging. Then,
BCD updates the set of ordered distances by removing all the ordered pairs involving the
merged MCs, and by adding the distances between the new MC and the remaining MCs in
the set. The procedure repeats on the new set of MCs. If the probability p(M.|S) is not
higher than p(M,|S), BCD tries to merge the second best, the third best, and so on, until
the set of pairs is empty and, in this case, returns the most probable partition found so
far. The rationale of this search is that merging similar MCs first should result in better
models and increase the posterior probability sooner thus improving the performance of the
hill-climbing algorithm. Empirical evaluations in controlled experiments appear to support
this intuition [23]. Note that the similarity measure is just used as a heuristic guide for the
search process rather than a grouping criterion.

3. Reasoning and Prediction with Clusters of Dynamics

The BCD algorithm partitions a batch S of m time series into ¢ clusters. Each cluster Cj
groups time series generated by the MC with transition probability Py, which is estimated
as (Prij) = (Qrij + nkij)/(ar; + ngi). The grouping of time series into clusters provides

10
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estimates of the marginal probability that a future time series is generated from the McC
with transition probability P;. This probability is the quantity pp = (Bx + mk)/(8 + m).
The probabilities pj and py;; can be used to recognize the cluster from which a new time
series is generated by using Bayesian predictive-sequential inference [4].

Suppose we observe a transition (zg, 1), with zg chosen, and we know that this transi-
tion can be generated only from one of the ¢ MCs estimated from the ¢ clusters, and we wish
to decide which of the ¢ MCs is more likely to be the generating model. Conditional on the
transition (z¢, z1), we can compute the probability that each of the ¢ MCs is the generating
process by using Bayes’ Theorem:

,11|Cy)p(C,
p(Cklzo, 1) = p(o; 21]Ck)p( k)
p(.TO,.Tl)

The quantity p(Cg|zg, z1) is the probability that the generating process is the MC in cluster
Ck, given the transition (xg,x1), while p(zg,21|C) is the probability of observing the
transition (zg, 1), given that the generating process is the MC in cluster Cj. Bayes’ Theorem
lets us update the prior probability p(C}) into the posterior probability p(Ck|zg,z1) via the
updating ratio p(zg,z1|C)/p(z0,21), and the posterior probability distribution over the
clusters can be used to choose the MC which, most likely, generated the transition (zg, ).

We only need to compute the updating ratio and, hence, the conditional probability
p(zo,z1|Cy), for any Cf, and the marginal probability p(xg,z1). This marginal probability
is computed as

p(xo,21) =Y p(x0,21|Ck)p(Ch)
k

so that the crucial quantity to compute remains the conditional probability p(z¢,z1|Cy). If
the value z is chosen deterministically, the probability p(z¢,z1|Cy) is simply the transition
probability p(z1|Cy, zo), which, if g = i and z1 = j, is P, and the posterior probability
of cluster C}, is

_ p(@1|Cr 20)p(Cr)
PCileo ) = & o) () @

The updating becomes slightly more complex when more than one transition is observed.
Suppose, for example, we observe the sequence S = (z¢,z1,22) and, hence, the pair of
transitions (zo,z1) and (z1,22). The posterior distribution over the clusters, conditional
on S, is

P(J?Oa £, .T2|Ck)p(0k)
p(fl:(], X1, $2)

p(Cklzo, 21, 22) =

11
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and the updating ratio is now p(xg, z1, z9|Ck)/p(z9, 21, 22). As before, the marginal proba-
bility p(zg, 1, z2) is Y p(x0, 1, 2|Ck)p(Cyk) and the quantity to compute is p(zg, z1, z2|Ck).
This probability can be factorized as

p(zo, 21, 22| Ck) = p(x0, 21| Ck)p(22|Ck, 20, 21) = p(21|Ck, 2o)p(22|Ck, 21). (5)

The first simplification p(zg,z1|C;) = p(z1|Ck, zo) is the same used above. The second

simplification p(z9|Ck,zg,z1) = p(z2|Ck,z1) is a consequence of the Markov assumption.

Both probabilities are then given by the estimates py;; and Py if 9 = 1, 21 = j, and 25 = [.

Simplification of Equation 5 determines this expression for the marginal probability
p(xo, 1, x9):

p(zo,x1,22) = Y _ p(xo, 21, 22| Ci)p(Cr) = D> _[p(w1|Ch. 0)p(Ci)Ip(22|C, 1)
k k

so that the posterior probability p(Ck|zg, 1, z2) is given by

D(Chlz0, 21, ) = [p(%1|Cr, 20)p(Ck)]p(x2|Cr, 21)

2k p(21|Cl, 20)p(Cr) Ip(22| Ok, 1)
Now, from Equation 4, we have that p(z1|Cy, zo)p(Cy) is proportional to p(Ck|zg, 1), with
a proportionality constant independent of k. Therefore, we can rewrite p(Ck|zg,z1,22)
above as

~ p(x2|C, 21)p(Cklzo, 71)
P(Ciloo, 21, 2) = >k P(22|Ck, 21)p(Ck|zo, 1)

which is identical to formula 4 with p(Ck|zg,z1) playing the role of p(Cy). This property
is the core of the predictive-sequential approach: For any sequence S = (zg,x1,x9, ), the
posterior distribution over the clusters can be computed sequentially, by using each transi-
tion (x4—1,x¢) in turn to update the current prior distribution into a posterior distribution
using formula (4). The posterior distribution will become the prior for the next updating.
This result is used in the next section.

4. Bayesian Clustering of Sensory Inputs

This section begins with a description of the robot used in the experiments. It then proceeds
by analyzing the application of BCD to the unsupervised generation of a representation of
the robot’s experiences, and finally shows how to use this abstract representation to enable
the robot to classify its current situation and predict its evolution.

12
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Figure 4: The Pioneer 1 robot.

Sensor name Interpretation Range of values
r.vel velocity of right wheel -600-600
l.vel velocity of left wheel -600-600
grip.f infra-red sensor at the
front of the gripper O=off; 1=on
grip.r infra-red sensor at the
rear of the gripper O=off; 1=on
grip.b bumper sensor O=off; 1=on
vis.a number of pixels of object
in the visual field 0-40,000
Vis.x horizontal location of object -140 = nearest
in the visual field 140= furthest
vis.y position of object 0 = most left,
in the visual field 256= most right

Table 2: Robot’s sensors and their range of values.

4.1 The Robot and Its Sensors

Our robot is the Pioneer 1 depicted in Figure 4. It is a small platform with two drive
wheels and a trailing caster, and a two degree of freedom paddle gripper (the two metal
arms coming out of the platform). For sensors, the Pioneer 1 has shaft encoders, stall
sensors, five forward pointing and two side pointing sonars, bump sensors, and a pair of
infra-red sensors at the front and back of its gripper. The bump sensors signal when the
robot has touched an object so, for example, they go on when the robot pushes or bumps
into something. The infra-red sensors at the front and back of the gripper signal when an
object is within the grippers. The robot has also a simple vision system that reports the
location and size of colored objects. Our configuration of the Pioneer 1 has roughly forty
streams of sensor data, though the values returned by some are derived from others.

We will focus attention on 8 sensors, described in Table 2. Figure 5 shows an example

13
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of sensor values recorded during 30 seconds of activity of the robot. The velocity-related
sensors r.vel, L.vel, as well as the sensors of the vision system vis.a, vis.x and vis.y take
continuous values and were discretized into 5 bins of equal length, labeled between .2 and
1. The vis.a sensor has a highly skewed distribution so that the square root of the original
values were discretized. Hence, the category .2 for both sensors r.vel l.vel represents values
between -600 and -340, while .4 represents values between -360 and -120, .6 represents
values between -120 and 120 and so on. Negative values of the velocities of both wheels
represent the robot moving backward, while positive velocities of both wheels represent
forward movements. Both negative and positive velocities of the wheels result in the robot
turning. The first two plots show sensory values of the left and right wheel velocity from
which we can deduce that the robot is probably not moving during the first 5 seconds (steps
1 to 50) or moving slowly (the bin labeled 0.6 represents range of velocity between -120 and
120). After the 5th second, the robot turns (the values of the velocity of the two wheels are
discordant) stops and then moves forward, first at low velocity then at increasing velocity
until stops, begins moving backward (as the velocity of both wheels is negative) and then
forward again. Note that the sensors grip.f and grip.b go on and stay on in the same time
interval. Furthermore, the dynamic of the sensor vis.a shows the presence of an object of
increasing and decreasing size in the visual field, with maximum size corresponding to the
time in which the sensors of the wheel velocity record a change of trend. The trend of the
other two sensors of the vision system, vis.x and vis.y, both support the idea that the robot
is moving toward an object, bumps into it, and then moves away.

The robot is programmed to engage in several different activities, moving toward an
object, loosing sight of an object, bumping into something, and all these activities will have
different sensory signatures. If we regard the sequence of sensory inputs of the robot as a
time series, different sensory signatures can be identified with different dynamic processes
generating the series. It is important to the goals of our project that the robot’s learning
should be unsupervised, which means we do not tell the robot when it has switched from one
activity to another. Instead, we define a simple event marker — a simultaneous change of
at least three sensors — and we define an episode as the time series between two consecutive
event markers. The available data is then a set of episodes for each sensor and the statistical
problem is to cluster episodes having the same dynamics. The next section will apply the
BCD algorithm to solve this problem.

4.2 Clustering the Robot Sensory Inputs

In this section we describe the results obtained with the BCD algorithm on a data set of
11,118 values recorded, for each of the 8 sensors in Table 2, during an experimental trial
that lasted about 30 minutes. The event marker led us to split the original time series into
36 episodes, of average length 316 time steps. The shortest episode was 6 time steps long
and the longest episode was 2917 time steps.
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Figure 5: Sensory inputs recorded by the robot during 30 seconds. The x-axes report the
time, measured every 1/10 of a second.

(0%

Sensor 1 5 10 20 40
11

18 7
visa 34 34 {12 {13 10
3 3

3

2 2 2 2 2

Table 3: Size of clusters found by the BCD algorithm for the sensor vis.a. Brackets before a
pair of numbers indicate that the clusters were produced by splitting the episodes belonging
to one cluster only for a smaller value of a.
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We ran our implementation of the BCD algorithm on the set of 36 episodes for each
sensor, using different values for the precision «, while 5 was set equal to 1. Table 3 shows
the number of clusters created by the BCD algorithm for the sensor vis.a, for some of the
values of « used in this experiment. A small value of the precision « leads BCD to identify
two clusters, one merging 34 episodes, the other merging two episodes. Increasing values
of « make the BCD algorithmn create an increasing number of clusters by monotonically
splitting the cluster merging 34 episodes. For example, this cluster is split into two clusters
of 18 and 16 episodes, when o« = 10. The cluster collecting 16 episodes is then split into
two of 13 and 3 episodes, for @ = 20, and then, when a = 40, the cluster of 18 episodes is
split into two clusters of 11 and 7 episodes, while the cluster of 13 episodes is split into two
clusters of 10 and 3 episodes. Larger values of o make BCD create an even larger number
of clusters, some of which represent MC learned from very sparse frequency matrices, so we
decide to stop the algorithm for a = 40, to avoid overfitting.

The pictures in Table 4 represent the essential dynamics of the MCs induced from the
BCD algorithm with the 36 episodes of the sensor vis.a. Thus, neither transitions with
probability inferior to 0.01 are represented in the chains nor are the uniform transition
probabilities of visiting all states. We stress here that the interpretation of the dynamics
represented by the MCs is our own one — we looked at the transition probability matrices
and labeled the dynamics according to our knowledge of the robot’s perception system —
and it is by no means knowledge acquired by the robot. So, for example, the first chain
represents a dynamic process concentrated on the first three states of the sensor vis.a. State
0.2 represents the presence, in the robot’s visual field, of an object of size varying between 0
and 1600 pixels, state 0.4 represents the presence of an object of size between 1600 and 6400
pixels, while state 0.6 represents the presence of an object of size between 6400 and 14,400
pixels. The maximum size is given by 40,000 pixels so that values between 0 and 14,400
represent an object that, at most, takes 1/4 of the visual field. Now the dynamics between
these three states can be that either the sensor value is constant or decreases because it visits
a state preceding itself, so that the overall dynamics is that of an object of decreasing size
in the visual field that eventually disappears. The interpretation of the other dynamics was
deduced in a similar way. Interestingly, the last chain represents essentially a deterministic
process, in which the sensor value is constant in state 0.2 showing that there is no object
in the robot’s visual field.

Similar results were found for the other sensors related to the robot’s vision system. For
example, the values of the sensors vis.x and vis.y produce two clusters for & = 1 and eight
clusters for &« = 40. The values of the other sensors tend to produce a smaller number of
clusters and to need a much higher prior precision to induce clusters: the minimum value of
the precision to obtain at least 2 clusters was 20 for the sensor l.vel; 40 for the sensors r.vel,
grip.f and grip.r; and it was 45 for the sensor grip.b. We used the same approach described
above to choose a value of a: we run the BCD algorithm for increasing values of o and
stopped the algorithm when it began producing MCs with very sparse frequency tables.
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Table 4: MCs learned with the BCD algorithm from the 36 episodes of the sensor vis.a.
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We found three clusters of MCs for both the sensors l.vel and r.vel (o« = 45 and 50),
representing dynamics concentrated on null or negative values of the velocity, null or positive
values of the velocity and a mixture of those. We found two clusters for the dynamics of
sensor grip.f (a = 40), the first one representing a process in which the gripper front beam
stays off with high probability and with small probability goes on and stays on, while, in
the second one, there is a larger probability of changing from the off to the on state. Hence,
the second cluster represents more frequent encounters with an object. The episodes for the
sensor grip.r were partitioned in three clusters (e = 40), one representing rapid changes from
the on to the off state, followed by a large probability of staying off; one representing rare
changes from the off to the on state, or the other way round, followed by a large probability
of staying in that state; the last one representing the sensor in the on state. The episodes
for the sensor grip.b were partitioned in two clusters, one representing rare changes from
the off to the on state, or the other way round, followed by a large probability of staying
in that state; the last one representing the sensor in the on state. So, for example, the first
cluster represents the sensor dynamics when the robot is not near an object but, when it
is, it pushes it for some time. The second cluster is the sensor dynamics when the robot is
pushing an object. Finally, the three clusters found for the sensor vis.x (& = 5) discriminate
the sensor dynamics when an object is far from the robot, or near the robot or a mixture
of the two. The four clusters of dynamics for the sensor vis.y (o« = 1) distinguish among
an object moving from the left of the robot’s visual field to the center, from the left to the
right, from the right to the left, or in front of the robot.

The interpretation of the dynamic processes, represented by the clusters that the BCD
algorithms found for each sensor, is our own and not the robot’s one. An interesting and
still open question is what the robot learned from these clusters. The clusters found by
the BCD algorithm assign a label to each episode so that, after this initial cluster analysis,
the robot can replace each episode with a label representing a combination of 8 sensor
clusters. Now, episodes labeled with the same combination of sensor clusters represent the
same “activity” characterized by the same sensor dynamic signature. For example, one such
activity is characterized by the combination cluster 1 for r.vel, cluster 3 for l.vel, cluster 1
for grip.f, grip.r and grip.b, cluster 2 for vis.a and vis.x and cluster 1 for vis.y. This activity
is repeated in 7 of the 36 episodes. Using our interpretation of the dynamics represented by
the clusters, we can deduce that this activity represents the robot that rotates and moves
far from an object (the velocity of the wheels are discordant, and the size of the object in
the visual field decreases and becomes null) and hence we have a confirmation that this
activity is meaningful. However, as far as the robot’s world in concerned, this activity is
nothing more than a combination of sensory dynamics.

This process of labeling the episodes in activities by replacing each sensor episode by
the cluster membership reduces the initial 36 episodes into 22 different activities, some
of which are experienced more than once. Thus, the robot learned 22 different activities
characterized by different dynamic signatures.
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4.3 Reasoning with Clusters of Dynamics

Results of Section 3 can be used to provide the robot with tools to recognize the cluster it
is in, given sensor data. We counsider here the six clusters of dynamics learned for the vis.a
sensor. From the data in Table 3, one can see that the probability distribution over the 6
clusters in Figure 4 is

Ck‘ Cl 02 03 04 05 06
ﬁk\ 0.19 0.30 0.06 0.09 0.09 0.27

This probability distribution is estimated using py = (B + my)/(8 + m) with f = 1 and
Br = 1/6. Each cluster, in turns, represent a MC with transition probability learned from
the time series merged in the cluster. For example, the transition probability of the MC in
cluster CV; is the table

02 04 06 038 1
0.2 1.00 0.00 0.00 0.00 0.00
Pr= 0.4 0.52 0.12 0.12 0.12 0.12
0.6 0.02 0.10 0.82 0.02 0.02
0.8 0.20 0.20 0.20 0.20 0.20
1 0.20 0.20 0.20 0.20 0.20

Suppose now we observe the sequence S = (0.2,0.2,0.4,0.6). The posterior distribution
over the clusters Cj, conditional on the first transition (0.2,0.2) is computed using for-
mula 4. Since pgi1 is 1.00 for £ = 1,2,6, 0.20 for £ = 3, and 0.43 for £k = 4,5, there
follows that p(0.2,0.2) = 0.83 and p(0.2,0.2|Cy)p(C1) = 0.194; p(0.2,0.2|C2)p(C2) = 0.301;
p(0.2,0.2|C3)p(Cs) = 0.012; p(0.2,0.2|Cy)p(Cy) = 0.036; p(0.2,0.2|C5)p(Cs) = 0.017; and
p(0.2,0.2|Cs)p(Cs) = 0.271. Formula 4 gives the posterior distribution over the clusters

Cj, | G G O3 Oy G5 Cs
p(CR0.2,02) | 024 036 001 004 002 033

This distribution, compared to those learned from the data, assigns more weight to clusters
C1, Cy and Cg and the most likely cluster generating transition (0.2,0.2) appears to be Cs.
When we use this updated distribution over the clusters as prior for the next updating,
conditional on transition (0.2,0.4), the distribution turns out to be

Ck ‘ C1 C2 C?, C'4 CE) CG
p(Ckl0.2,0.2,04) | 0.00 0.04 010 0.67 0.15 0.04

and the most likely cluster is C4. Indeed, from Figure 4, we see that cluster C4 assigns high
probability to the transition (0.2,0.4). The next updating produces
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Ck ‘ C1 C2 03 04 CE) 06
p(Ck|0.2,0.2,0.4,0.6)‘ 0.00 0.00 0.61 0.08 0.24 0.06

so that likely generating clusters are C'3 and Cs. Note that cluster C5 is the most likely and
indeed it is the only cluster that gives high probability to the sequence (0.2,0.2,0.4,0.6).

This procedure can be used to reason with longer sequences so that the robot can
recognize the cluster it is in and use this to make decisions.

5. Future and Related Work

We are currently implementing one extension to BCD. First, the BCD algorithm clusters
univariate time series, but a multivariate version is in the works. Suppose one has a multi-
variate time series of k variable each of which takes, say, v values. It’s trivial to recode this
series as one in which a single variable takes v* values. The difficulty is computational: the
transition probability table for the univariate case will have (v*)? probabilities to estimate,
and will tend to be very sparse unless the time series are quite long. In contrast, the tran-
sition probability tables for the k£ variables in the multivariate case could be quite dense,
yielding good probability estimates, with shorter series. The current multivariate extension
of BCD makes some assumptions of conditional independence among the variable dynamics
so that each cluster becomes a set of MCs with independent transition probability tables.

BCD models time series as first order MCs. More complex models involve the use of k-
order Markov chains [28], in which the memory of the time series is extended to a window of
k time steps, or Hidden Markov Models [15], in which hidden variables H are introduced to
decompose the complex auto-regressive structure of the time series into smaller pieces. Hid-
den Markov Model were originally introduced in speech recognition [21] and are nowadays
applied in many fields ranging from DNA and protein sequencing [13, 14] to robotics [6]
and language learning [17]. Despite their popularity, Hidden Markov Models make assump-
tions that are questionable on the basis of recent results about the identifiability of hidden
variables [32] because identifiability of the hidden variables may impose strong constraints
on the auto-regressive structure of the series. At first glance it may appear that BCD and
Hidden Markov Models are similar technologies, and indeed we have used Hidden Markov
Models for some robot learning tasks [7], but they are quite different. BCD approximates the
process generating time series with MCs and clusters similar MCs by creating a variable C'
which represents cluster membership. Conditional on each state of the variable C, the model
for the time series is a MC with transition probability p(X; = j| X;—1 = i, C)). Graphically,
this assumption is represented by the model in Figure 6. The oval represents one MC and
C separates different ovals, so that, conditional on C' = C}, we have p(X; = j|X;—1 = i,Ck)
and this is independent of other Mcs.

In a Hidden Markov Model, the hidden variable H (or variables) allows one to compute
the transition probabilities among states as p(x¢|z;—1, Hi) = p(x¢|Hy), so that conditioning
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Figure 6: Graphical representation of the model used by BCD.
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Figure 7: Graphical representation of a Hidden Markov Model.

on the state of the hidden variable makes the dependence of z; on z; ; vanish. Figure 7
represents graphically this assumption.

A detailed explanation of the difference between a Hidden Markov Model and the model
used by BCD is in [35]. Smyth [33] presents an algorithm for clustering Hidden Markov Model
and we will compare it with BCD.

The Bayesian modeling-based approach used in BCD is similar to that used, for example,
by Raftery [1, 9] to cluster static data. Recent work [24, 34] attempted to extend the idea
to dynamic processes without, however, succeeding in finding a closed form solution as the
one we have identified. For example, Ridgway [24] proposed using Markov Chain Monte
Carlo methods, notorious for their slowness. Smyth [34] proposed a model-based clustering
algorithm to cluster time series. Compared to BCD, that algorithm supposes the number
of clusters known in advance, while BCD finds the number of clusters. Furthermore, an
important novelty of our method is its heuristic search that makes the algorithm feasible.
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Methodology aside, BCD is similar in some respects to some other algorithms for clus-
tering time series. To assess the dissimilarity of a pair of multivariate, real-valued time
series, Oates applies dynamic time warping to force one series to fit the other as well as
possible; the residual lack of fit is a measure of dissimilarity, and with this, Oates can
cluster episodes [19]. Rosenstein solves the problem by first detecting events in time series,
then measuring the root mean squared difference between values in two series in a window
around an event [25, 26]. It is worth noting that these methods and BCD handle time very
differently. In Rosenstein’s method, two time series are compared moment by moment for
a fixed interval. In Oates’s approach, one series is stretched and compressed within in-
tervals to make it fit the other as well as possible. The former method keeps time rigid,
the latter makes time elastic. If the duration of a sequence within a series is important to
the identity of the series — if clustering should respect durations — the former method is
probably preferable to the latter. BCD is even more extreme because it transforms a time
series, in which durations might be important, into a table of state transitions, which is
inherently atemporal. For instance, one cannot tell by looking at a transition table whether
a transition X; = j|X;_1 = 7 occurred before or after a transition Xy = j|Xy_1 = 1.

The problem of finding dependencies between states in time series has been studied by
[20, 18, 11, 12]; the current work is unique in its approach to clustering time series by the
dependency structure that holds among states, and in particular, its ability to differentiate
time series that have different dependency structures.

6. Conclusions

This chapter presented BCD a model-based Bayesian algorithmn to cluster time series gener-
ated by the same process. Although in this chapter we applied BCD to cluster time series of
robot’s sensory values, the algorithm has been applied successfully to identify prototypical
dynamics in simulated war games, music composition and tracking of financial indexes. Our
conjecture for this success is that, in those applications, approximating the true generating
process by a first order MC was enough to capture the essential dynamics thus providing
the algorithm with the information needed to partition the original set of time series into
groups. However, approximating a dynamic process by a MC has limitations: for example
the order with which transitions are observed in a time series is lost and this may be a
serious loss of information. The results given in Section 3 can be used to assess the ade-
quacy of the Markov assumption, by using clusters found by the algorithm to solve some
classification or prediction task.
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