Knowledge Media Institute

Visualization of Dynamic Chat
Communication

Ondprej Novak, Marc Eisenstadt, Pavel Slavik
KMI-TR-121
June, 2002

www.kmi.open.ac.uk/papers/kmi-tr-121.pdf

Visualization of Dynamic Chat Communication

Ondtej Novak', Marc Eisenstadt’, Pavel Slavik®
!Czech Technical University, Department of Computer Science and Engineering
>The Open University, Knowledge Media Institute

Abstract

This work is aimed at visualizing the dynamic behaviour of
very large communication networks. The visualization of
large graphs and networks is a crucial part of many
applications, for which typical approaches are too
demanding of computational resources. Since one of the
most important issues is a visualization of the dynamic
behaviour of graphs, special aspects of the visualization of
huge graphs with dynamic behaviour are discussed. The
paper describes an algorithm that speeds up the
visualization of very large graphs and provides fast access
to underlying data structures. It provides an adaptive data
structure for general dynamic graphs and discusses the
adaptation of this structure to very large communication
networks. Our method supports several special tools for
efficient analysis and evaluation of the graphs representing
communication networks.

Keywords: Dynamic graph, Dynamic visualization, Tree,
Information visualization, Large graphs, Communication
network

1 Problem definition

Distance learning and ‘supported open learning’ are key
developments in modern educational systems. In contrast to
conventional universities, where students receive books
and other materials, attend physical classes and consult
with tutors periodically, modern distance learning
establishments use a mixture of conventional print
materials, multimedia, and web-based media that enable
students and tutors to communicate either entirely or at
least partially via synchronous and asynchronous
technologies that eliminate (or at least reduce) the need for
face to face meetings.

For efficient use of distance learning applications it is
very helpful to have a suite of administrative and
evaluation systems, so that tutors can react more
appropriately to students’ requirements and questions. Such
systems need to provide real-time information about the
state of students and tutors and information about their
ongoing communication. One of the best-known

" xnovako2@fel.cvut.cz
* m.eisenstadt@open.ac.uk
? slavik@fel.cvut.cz

universities that specialize in distance learning is The Open
University (http://www.open.ac.uk). The Open University
has about 200 000 distance learning students throughout
the world. We have been collaborating with The Open
University’s Knowledge Media Institute on creating
efficient tools for better scoring and evaluation that will
help their tutors in their work. Visualization of information
is one of the best ways of introducing complex data to the
user in order to be enable efficient evaluation.

The communication between tutors and students and
between students themselves creates a dynamic
communication network. From the abstract point of view
the network is a dynamic graph, where users are nodes and
messages or other data flowing between users are edges.
The graph has several special aspects: it is very fragmented
(see fig. 1), dynamic and huge. The high level of the graph
fragmentation is caused by the large number of users of

a b C

Figure 1: Types of graph:
a) tree graph, b) general graph, c¢) fragmented graph

which only small part communicates at one moment. This
behaviour leads to a graph with many standalone nodes and
few edges, whose position and state continually changes.
The most important aspect for visualization of dynamic
graphs is their behaviour in time. It means continuous
changes of node and edge numbers and changes of values
of node and edge attributes. The aspect of easy-to-use
navigation in the dynamic graphs is very challenging
because of huge number of visualized objects, which are
continually changing. The changes of data are one of the
most important aspects to visualize in many applications.
The user can clearly see which parts of data are changing

and which not and so he can easily recognize hidden
information patterns. The changed data have to be
highlighted in order to draw attention of the user.

The next important aspect is that however fast today
computers are, continual change of large graphs is too
demanding for their resources. Underlying temporal data
structure can speed up work with huge graph. The
structures are very useful with respect to use of focus and
zoom method and filtering, because they reduce amount of
searched objects. Since the graph behaviour is very
dynamic, structure for fast updating is needful.

2 Context of our work

In information visualization, both navigation and
representation are important. At first, the way that nodes
and edges are displayed is essential, as this is a critical
issue when the size of the graph increases. The techniques
and tools for information representation provide an
overview of the graph to the user and enable him to
visualize specific node within some context. Fundamental
factors for good visualization interface are: overview of the
structure for a global understanding of the structure and of
the relationships within, ability to zoom and to select some
nodes and dynamic requests in order to filter data in real
time.

Herman, Melancon, Marshall [6] point out that key
issue for graph visualization is size of a graph, because the
size can compromise performance or reach limits of
viewing platform. They also show several problems with
display cluttering that can make hard or impossible
recognition of separate objects on display. Displaying an
entire large graph may give only overall structure and helps
to find out important locations but it makes difficult to
comprehend details of graph without using other methods
for the graph inspection.

Eick, Wills and Becker in [2], [5] describe basic rules
for visualization of network data. They analyze
communication networks with thousands of nodes and tens
of thousands of links. They use both geographical and
special layout algorithms for node distribution. Their
visualization techniques involve static displays, interactive
control and animation. Aggregation, averaging,
thresholding and exception reporting methods were used to
reduce amount of data. They named three main problems
for effective visualization: display clutter, node positioning
and perceptual tension.

T. Munzner [8] introduces two different methods for
visualizing middle size and large size hierarchic networks.
She uses hyperbolic view with zoom and focus method for
improving navigation in large hierarchic networks in H3
project. The method is used for networks up to 100 000
nodes and the user can interactively inspect data from
network. Next project visualizes MBone tunnel topology. It

uses geographical layout and arc links in interactive 3D
visualization in order to reduce display clutter.

Brown, McGregor and Braun [3] create tool for
visualization of network performance called Cichlid. They
use several visualization techniques based on animation for
introduction of data flows inside network. They create
abstract data model for network visualization and client
server method is used for data collecting.

Donath, Karahailos and Viégas [4] present their tools
for visualizing conversation that sustain from graphical
interface for synchronous conversation — Chat Circles and
program for visualizing threaded discussion - Loom. Their
work is focused on highlighting social information and
helping people make sense of the virtual world. They
define new term — social visualization, which is defined as
the visualization of social data for social purposes.

3 Description of algorithm

Since of these facts effective temporal structure was
developed in order to speed-up visualization of large
dynamic graphs with respect to previous aspects. The
temporal structure is based on quad trees. The quad tree is
based on layout attributes of graph nodes where nodes’
attributes represent location of the graph node on the world
map because every node is metaphor for one user, who is
located somewhere in the world. Every graph node has got

T4 /\\ i
& (S :

Figure 2: Tree built on top of cartographic layout

two layout attributes called longitude and latitude that
describe its position on the world map. This layout is
known as cartographic layout and is often used in
cartographic information systems (fig. 2).

With reference to dynamic behaviour of the graph, the
tree has to adapt to changing topology of the graph. The
sub-tree that matched more close to the graph is built when
any graph node is added to or removed from the tree. The
adaptive quad tree is build in order to height of the tree
should be minimal. By minimizing the height of the tree
fast access to leaves of the tree is guaranteed. Since
effectiveness of searching through the tree was considered,
more than one graph node is stored in one tree leaf. Two
limits for adding new graph nodes to the leaf are in the
algorithm.

First one, soft limit denotes maximum number of graph
nodes in leaf. If new node is added to the leaf with number
of graph nodes in leaf equal to the soft limit, the leaf tries
to create its new children and distribute its graph nodes to
the children. If distribution is successful e.g. not all of
graph nodes from the leaf are added to one child, the leaf is
changed into inner tree node and new graph node is added
to one of its children.

Second one, hard limit is usually two or three times
greater then the soft one and denotes maximum number of
the graph nodes in leaf. The leaf has to create its children

root

tree nodes

leaves with
lists of
graph nodes

Figure 3: Structure of adaptive tree

tree nodes if its number of the graph nodes exceeds the
hard limit. Both hard and soft limit depends on the number
of graph nodes in the tree and is adapted to fit range of
optimal proportion between global number of graph nodes
and maximum graph nodes in one tree leaf (fig 3).

The efficiency of traversing the structure sustains from
two parts. At first the tree has to be traversed till the leaf is
reached. Then list of the nodes in the leaf is searched and
nodes that match searching criteria are chosen. At some
point is searching through short list of graph nodes faster
than traversing longer tree structure. A typical example is
the case where many graph nodes are very close. Long tree
branch would have to be created. But traversing of that
structure is slower than simple searching through the list of
nodes. From these facts it is clear that number of the graph
nodes in leaves should be adapted with respect to the global
number of the graph nodes. The adaptation of maximum
number of graph nodes in leaves of the tree balances time
for traversing the tree structure and time for searching lists
of the graph nodes in the leaves of the tree.

Since the graph is very dynamic, updating of the
adaptive quad tree of nodes must be considered. Method of

postponed updating of graph nodes was chosen in view of
relatively low refresh rate of the user’s display. The method
is called update on demand. Every node has got structure of
its changes. Changes are applied only if node has to be
visualized on display. With reference to the adaptive quad
tree every inner tree node has got a flag if any change has
happened in its sub-tree. The flag speeds up traversing of
the tree whenever only changed nodes are required. Before
changed node is sent to visualization every changes from
the list are applied. The update on demand method speeds
up visualization, because no redundant data are visualized.

The attributes of the graph nodes and the tree nodes are
very important for our algorithm. Every node of the graph
has several important attributes: unique identification
attribute, position attributes — longitude and latitude and
other data attributes. The node of the tree has an attribute of
change that indicates if some graph node lying in sub-tree
of the tree node has been changed since last operation of
taking the graph nodes from the sub-tree. Other attributes
in the tree node are: attributes of rectangle covered by this
tree node — longitude and latitude range, number of the
graph nodes that lying in the sub-tree of the tree node and
information about topology of the tree. The topology
attributes are pointer to the parent tree node and vector of
four pointers to the child tree nodes. The leaf nodes of the
tree have list of the graph nodes instead of vector of the
child tree nodes.

4 Implementation
The application is written in ANSI C++ using GUI library

Data Data
Source Source

\iML Data Strear/

Data Storage | |«—»| Database
- XML L_Source
Adaptive Tree|| pata
Filters Stream

i

Visualization

Figure 4: Architecture of the application

Qt [10]. It can be compiled both under Microsoft Windows
and Linux/Unix platform. The architecture of the
application is based on client server system. The
application has three main parts: outer data sources, inner

data server module with adaptive tree engine and filtering
engine and visualization client (fig. 4).

We use two main data sources. At first, they are
communication data sources, from that we get information
about communication activity between users. When the
user log into the communication system, new graph node
entity is created and after his logout his node is destroyed.
The second source is a database server that gives us
information about an user such as his position, name, etc.
XML data stream is used for communication between data
sources and data server. The stream is built on top of
TCP/IP communication. The use of the XML data stream
enables us simply extend current protocol in future and
increase portability of the code.

The inner data server module contains three parts: main
data storage, adaptive tree engine and filtering engine. The
main data storage is a structure that stores all information
about nodes and their changes. It provides fast access to
every node by their unique identification key, for example
username, etc. The adaptive tree engine stores information
about distribution of nodes by their position. It is a
hierarchic tree structure and it provides fast access to the
nodes in all regions. It provides data for visualization client
and filtering engine. The filtering engine presents an
efficient way for the reduction of visualized information.
The engine is open modular system that can be modified by
the user. The user can add several modules for filtering
nodes and edges of graph by their attributes and this engine
can be used for clustering too.

The visualization client provides a graphic user
interface for displaying graph, filters controlling and
displaying information about selected object of the
visualized graph. The interface enables the user to select
diferent lenght of time period on that the graph represents
state of the communication network, so that the user could
recognize communication patterns over longer time period.
Zoom and focus technique are used for an efficient
navigation through the graph. The user sees information
about global distribution of node clusters in one window.
The information contains number of the nodes in cluster,
information about change flag in cluster, e.g. if some nodes
in the cluster have been changed from last displaying of the
cluster. The user interactively selects some region and data
from the region are filtered and are displayed in other
window in detail. Any displayed object can be selected and
the user can get all context information about the object in

t.=t

c tree leaves *

a separate information window.

5 Results and tests

Since the algorithm speeds up searching through huge data,
we deduced theoretic time complexity of our algorithm.
Total time for the searching using our structure is:

n
c;m*q*kgmz+m*k*gx

where .. is time for traversing tree structure and #,qy., 1S
time for traversing list of the graph nodes in tree leaves.
The height of the tree is:

where n is number of graph nodes stored in the tree and £ is
maximum number of graph nodes in one tree leaf, k is the
number called soft limit in section 3.

For extracting of m graph nodes from the tree the maximal
time ¢, is equal to:

where ¢, is time for traversing one level of the tree and ¢ is
time for extracting one graph node from the list in the leaf
and comparing the graph node position with the searched
area. For usual usage of the tree is lesser than #. because
given area is searched for graph nodes. In this case the tree
is not traversed from the root to the leaf for every searched
graph node, but only partial sub-trees are traversed. If all
area covered by the leaf is inside the searched area, none of
stored graph nodes in the list have to be compared with the
searched area and whole leaf’s list of graph nodes is

ngn*g,

appended to the result set.

If only changed graph nodes are searched the time for
searching is usually much lesser or at worst equal to .
because only changed sub-trees are traversed. In the worst

<< t SO

c seq

t, << c*t,,

case, if some nodes are changed in all leaves, time for
searching changed nodes is equal to 7, .

Sequential time #,, necessary for searching for m graph
nodes through list of graph nodes is:
where 7 is number of graph nodes stored in the list and ¢ is
time for extracting one graph node from the list and
comparing the graph node position with searched area. The
method is efficient if:
where c is constant.

The speed of our implementation of algorithm was
tested. The tests were made on computer with processor
PIIT 600MHz and with 512MB memory. At first, we tested
time that is needed for searching 1000 graph nodes in
random area. All result times are measured in milliseconds.
We tested for different datasets, it was graphs with 10 000,
50 000, 100 000 and 150 000 nodes. We tested both tree
and sequential searching. The results of our tests are in
table 1 and at figure 5.

Nodes in graph | Sequential time | Tree time

10000 146.643 2.997
50000 727.485 2.503
100000 1456.051 2.251
150000 2124.817 2.125

Table 1: Times [ms] for searching for 1000 graph
nodes

3.2

2.8

26

Time for searching [ms]

24

22

10000 50000 100000
Number of nodes in graph

150000

Figure 5 Time for tree searching for 1000 nodes, 10
nodes in leaf

Next we measured the time for searching 1000 graph
nodes in trees with different distribution of graph nodes in
tree leaves, e.g. with different soft limit. Results are in table
2 and at figure 6. From figure 6 is clear that as the time for
searching as the ratio between searched and selected nodes
depend on maximum number of graph node in leaf.

Results from the visualization client are at figure 7 and
8. Typical message pattern from small group of users
shows high level of fragmentation of the communication
graph. The figure 7 shows this state. Only few users
communicate one to another at same time. The rectangle
objects at the figure represent tutors whereas circular
objects symbolize students. However clear is the
communication pattern with the small group of users, with
more users display become more cluttered. The figure 8
shows the communication pattern for medium group of

n
h=log,—,
g4k

user with about 500 people. The highlighting of changes

Max. graph Number of graph nodes
nodes in
leaf
10 000|50 000|100 000 | 150 000
10| 2.997| 2.553| 2.721| 2.125
20| 4.594| 3.352| 2569 2.360
50| 5.033| 3.733| 2.984| 2.811
100| 7.665| 5.666| 3.495| 3.116
200|16.488| 7.849| 5.283| 4.213
5001 19.717|14.275| 6.988| 5.719
1000/ 26.362| 16.229| 8.171| 6.946
2000 28.979| 12.855| 10.207
5000 22.301| 18.239
10000 24.873| 23.954
15000 34.675

Table2: Times [ms] for searching 1000 graph nodes
with different distribution in tree leaves

40

354 ,

30 1

25 4

Time [ms]
N
5]

10 20 50 100 200 500 1000 2000 5000 1000 1500

Number of graph nodes in leaf

—<—10000 —#—'50000 --&--100000 — @ - 500000

Figure 6 Time for tree searching, dependency on the
number of graph nodes in a leaf

helps the user to fast recognize new objects in the
communication graph and prevent him from fall into
chaotic chunk of information.

6 Future work

There are many opportunities for making improvements to
our tool. At first, we want to visualize longer time period
and enable user to see communication patterns over longer
time period. For the fast access to time data and history of

\ ; <y
SR\ o DT
= R s L W Lty F
AN

W
i

P
[A"

) SN e

A, ,.,,-;z.;.-.-‘g’ {‘1
7\ ‘eﬂgﬁ‘\%‘jﬁé %
i

4

) \

TN

Figure 8 Communication pattern of medium group of
users

every object in dynamic graph, we intend to create
structure, that stores key events in “life” of the object and
update events for the key events. The ability of evaluating
longer period brings to the user powerful tool for
evaluating new communication patterns. Then we would
like to improve user interface of visualization client for
easier interaction with the user. In future the client will be
totally independent from main core of data server. Several
new modules for working graph data will extend the core
of data server. We would like to create a fast and platform
independent communication protocol between visualization
client and data server. The protocol should transfer
demands of graph data, settings of filters and other modules
and it will transfer graph data to the client. We are going to
create thin version of the visualization client that will work
with the web servers and it will create and send pictures

rendered on the server side. The visualization client will
only show the pictures and will send parameters for
visualization to the server.

7 Conclusion

The visualization of large dynamic structures such as
graphs and networks is a time consuming and not trivial
problem. A method for speeding up the visualization was
introduced. The algorithm is based on adaptive quad tree
connected to update on demand visualization method. It
speeds up the visualization of large dynamic graphs and
brings a powerful tool for exploring such dynamic
structures to the user. The measured results were discussed
and effective speed up of visualization was noticed. The
algorithm was tested on visualization dynamic
communication network among users. Our application can
visualize behaviour of dynamic communication network
with thousands communication nodes. The system includes
tools for filtering input data for easy recognition and
exploration of hidden information patterns.

References

[1] O. Baudon, P. Auillans, Graph Clustering for Very
Large Topic Maps, XML Europe 2001, 21-25 May
2001, Internationales Congress Centrum
(ICC),Berlin, Germany

[2] R.A. Becker, S.G. Eick, A.R. Wilks, Visualizing
Network Data, IEEE Transactions on Visualization
and Computer Graphics, Vol. 1, No. 1, March 1995

[3] J.A. Brown, A.J. McGregor, H-W Braun, Network
Performance Visualization: Insight Through
Animation, PAM2000 Passive and Active
Measurement Workshop, Hamilton, New Zealand,
pp- 33-41, Apr. 2000

[4]). Donath, K. Karahalios, F. Viégas, Visualizing
Conversation, Proceedings of the Thirty-Second
Annual Hawaii International Conference on
Systems Sciences, January 1999

[51 S.G. Eick, Aspects of Network Visualization,
Computer Graphics and Applications, Vol. 16,
No.2, pages 69-72, March 1996

[6] I. Herman, G. Melancon, M.S. Marshall, Graph
Visualization and Navigation in Information
Visualization: a Survey, 1EEE Transactions on
Visualization and Computer Graphics, Vol. 6, No.
1, pp. 24-43, January-March 2000

[71 D. A. Keim, Visual Exploration of Large Data Sets,
Communications of the ACM, August 2001/Vol. 44,
No. 8, p.39-44

8]

(9]

[10]

H. Kurnar, C. Plaisant, M. Teittinen, B.
Schneiderman, Visual Information for Network
Configuration, University of Maryland CS technical
reports, June 1994, Maryland USA

T. Munzner, Interactive Visualization of Large
Graphs and Networks, Ph.D. dissertation, Stanford
University, June 2000

http://www.trolltech.com

