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Abstract. This paper presents a learning mechanism that applies nonlinear 
regression analysis to model a negotiation agent’s behaviour based only on the 
opponent's previous offers. The behaviour of negotiation agents in this study is 
determined by their tactics in the form of decision functions. Heuristics based 
on estimates of an agent’s tactics are drawn from a series of experiments. By 
applying the nonlinear regression and the obtained heuristic knowledge, an 
agent can improve their overall performance by predicting the opponent’s 
deadline and reservation value, terminating pointless negotiation, and avoiding 
negotiation breakdown. The findings of this study show that this approach can 
be used to obtain better deals than previously proposed tactics. The learning 
mechanism can be used online, without any prior knowledge about the other 
agents and is therefore, very useful in open systems where agents have little or 
no information about each other. 

1 Introduction 

Negotiation is a process of joint decision making between two or more parties in an 
effort to resolve their conflicting demands. Negotiation has been treated formally by 
researchers in economics and game theory, and informally (i.e. based on 
observations) by researchers in industrial relations, international relations and 
counselling. This paper focuses on the study of two-party negotiation, which is the 
subject of a great deal more empirical research than the multiparty case [6]. 
Moreover, multiparty negotiation can be described as multiple, mutually influencing, 
two-party negotiations over multiple issues [3]. In two-party negotiation, the two 
agents play opposing roles, such as buyer and seller. This research on negotiation lies 
between the fully co-operative and fully competitive negotiations. 

In electronic commerce, the task of negotiation can be delegated to a software 
agent in order to save human users time on activities which are either routine or 
demanding. To get better individual or social outcomes, the software agents require 
appropriate tactics. A tactic is the decision policy for choosing actions in different 
situations. Because negotiation is an interactive process, the outcome is not only 
determined by an agent’s own tactic but it is also influenced by the other agent’s 
choices. This characteristic makes it difficult to find an optimal tactic. The research 
presented here focuses on the online modelling the other agent’s tactic in order to 
reach better deals in negotiation.  
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The following section reviews some of the related research on negotiation tactics. 
Section 3 explains the motivation for predicting an opponent’s negotiation tactic. The 
use of nonlinear regression for estimating the family, form and parameters of an 
opponent’s tactic is introduced in Section 4. Section 5 presents a set of heuristics for 
identifying an opponent’s negotiation deadline and reservation value using the results 
of the nonlinear regression analysis. To test the performance of the prediction 
mechanism against other prevailing tactics, a set of two-party negotiations were 
carried out and the results are described in Section 6. Section 7 discusses the use of 
the proposed prediction mechanism. Section 8 highlights the main conclusions to be 
drawn from this work and Section 9 discusses some potential areas for future 
research. 

2 Related Work 

The related work carried out in game theory is presented in the following subsection. 
Due to the unrealistic assumptions in game theory, decision functions were proposed 
that would enable an agent to generate offers according to the time available, the 
resources remaining, or, the behaviour of an opponent. The three families of decision 
functions and their common forms are described. The section concludes with an 
overview of some related work on exploring optimal strategies and effective tactics. 

2.1 Game Theory 

Game theory treats the negotiation as a kind of game and negotiating agents as the 
players in a game. Game theory provides formal concepts to analyse the strategic 
interaction among agents in negotiation [1]. However, game theory has two 
fundamental assumptions: common knowledge and perfect computational rationality. 
In the first assumption, all information about the possible strategies, the outcome with 
each configuration of strategies, etc., are common knowledge known to each agent. 
Perfect computational rationality assumes a negotiation agent has unbounded 
computational power. With this power, agents can actually find the optimal strategies 
at the beginning of the game. These assumptions do not necessarily hold for real-
world negotiation and therefore make it difficult to apply game theory in practice. 

2.2 Decision Functions as Negotiation Tactics 

Since an agent has limited computational power and incomplete knowledge about 
other agents, it is necessary for an agent to produce offers based on their own criteria, 
such as, time limits or resource availability. Using this approach, Faratin et al. 
proposed a negotiation model and three families of negotiation tactics, namely: time-
dependent, resource-dependent and behaviour-dependent tactics [2]. 
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2.2.1 Negotiation model. In this negotiation model, two parties negotiate on an issue, 
such as price, delivery time, quality, etc. This paper focuses on the negotiation of a 
single issue that has a continuous value. The two parties adopt two conflicting roles, 
such as the buyer and seller of goods or services. The negotiation is a process of two 
parties making alternate offers. Let is the offer proposed by the seller s to the 
buyer b for a negotiation issue at time t. is delimited by [min , max ], the range of 
all possible offers by s. The negotiation is to determine a value x (x 

t
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[min , max ]) which is mutually acceptable to s and b. max  is actually the reservation 
value of b, that is, any value larger than max  won't be accepted by b. min  is the 
reservation value of s, that is, any value smaller than min  won’t be acceptable to s. 
Each agent a has a scoring (or utility) functionV  that assigns a score to 
value x in D . The scoring functions are either monotonically increasing for the seller 
or decreasing for the buyer. 
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Offers are generated by functions called tactics. A tactic generates a value for a 
single negotiation issue based on a single criterion such as the time available, the 
resource remaining, or the opponent’s behaviour. 

2.2.2 Time-dependent family of tactics. In this family of tactics time is the 
predominant factor. All of the tactics in this family prescribe that an agent a concedes 
to their reservation value by their t . What differentiates them is the shape of their 
concession curves (see Fig.1). The offer of agent a to agent b at time t ≤  is 
modelled by a function  which is dependent on time: 
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Both forms are parameterised by a value β that determines the rate at which 
an agent approaches their reservation value. The expressions above represent an 
infinite number of possible tactics, one for each value of β (see Fig.1). 

+ℜ∈

 
There are three types of tactics in this family: Boulware (β « 1) where an agent 

does not start conceding until the deadline is nearly up. Conceder (β » 1) where an 
agent will start giving ground fairly quickly. And, Linear (β = 1) where an agent 
concedes the same amount in each round of the negotiation. 
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Fig. 1.  Examples of Concession Curves for the Polynomial Time-dependent Family of Tactics 

2.2.3 Resource-dependent family of tactics. These tactics generate offers depending 
on how a particular resource is being consumed. They become progressively more 
conciliatory as the quantity of resource diminishes. 
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2.2.4 Behaviour-dependent family of tactics. These tactics base their actions on 
their opponent’s behaviour.  

(1) Relative Tit-For-Tat: Agent a reproduce, in percentage terms, the behaviour 
that their opponent b exhibited in the previous δ ≥1 rounds. 
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(2) Random Absolute Tit-For-Tat: Same as Relative Tit-For-Tat, except that the 
behaviour is imitated in absolute terms. 
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(3) Average Tit-For-Tat: Uses the average of the percentage change in a window 
of γ ≥ 1 of the opponent’s history: 
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2.3 Optimal Strategies and Effective Tactics 

Since decision functions were proposed in [2] as negotiation tactics, others have 
extended the research on the use of these three families of tactics.  

The work Fatima et al. concerns the effect of time on the negotiation outcome 
between agents adopting the time-dependent family of tactics [4]. In their approach an 
agent holds a set of possible values for the opponent’s reservation value and deadline 
along with a binary probability distribution over these values. Based on the expected 
utility under the probability distributions, Fatima et al. give conditions for the 
convergence of optimal strategies. The effectiveness of this approach relies heavily on 
the quality of the probability distribution used. 

The research of Matos et al. examines the relative performances of the three 
families of tactics using a genetic algorithm. They produced a set of average pair-wise 
comparative performances between tactics [5]. These performance values provide a 
basis for choosing an appropriate tactic for an agent, when negotiating with another 
agent whose tactic is known. Since the tactic is private information, an agent needs to 
learn this information during the negotiation in order to apply this approach. 

3 Proposed Approach 

It is argued here, that in order to obtain a better outcome in negotiation, an agent 
needs to find out some information about their opponent. However, in competitive 
bilateral negotiation, due to the diversity and complexity of negotiation in practice, a 
negotiator has little information about their opponent. Under this uncertainty, 
although an agent can choose a tactic with best performance on average, such as 
resource tactic [5] or Linear time-dependent tactic [3], both tactics can not guarantee 
an agent the best deal. Since there is no optimal tactic for all negotiation 
environments, an agent has to choose the most effective tactic when facing agents 
with different tactics. Typically, an agent does not declare their tactic. In fact, the only 
available information in most cases is the previous offers from the other negotiating 
agent. 

The research here explores the following questions: If an opponent adopts one of 
the above widely researched tactics, can the tactic’s family and form be identified, 
and furthermore, can the decision parameters in the tactic be estimated from their 
previous offers? Furthermore, if an agent can predict these kinds of information, can 
the information be used to determine the agent’s responses in order to achieve the 
optimal outcome for the predicting agent? 

The proposed approach uses nonlinear regression to learn an opponent’s tactic. 
Using the results obtained an agent can: 
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• discriminate which of the three families of tactics their opponent has adopted 
(i.e. time-dependent, resource-dependent or behaviour-dependent tactic). 

• predict the opponent’s offers. 
• identify the opponent’s tactic type in the early stages of negotiation (e.g. 

Boulware, Conceder or Linear in the time-dependent family). 
• estimate the opponent’s reservation value and deadline using the identified 

tactic type. 
The information about the opponent’s tactic type can be used to guide the 

predicting agent’s choice of tactic, based on the existing research results such as the 
pair-wise performance table presented in [5] or the hypotheses described in [3].  

Furthermore, by identifying the opponent’s deadline and reservation value, the 
predicting agent can either avoid breakdown or terminate unprofitable negotiations.  

For example, in the case where the buyer’s predicted offer at the seller’s deadline 
is less than the seller’s reservation value breakdown cannot be avoided; therefore, the 
seller should withdraw from the negotiation. In cases where negotiation carries a 
communication cost and the buyer’s predicted offer at the seller’s deadline, minus the 
communication cost involved, is less than the buyer’s current offer, terminating the 
unprofitable negotiation will avoid any further costs by accepting the buyer’s current 
offer. 

By adopting an effective tactic, minimising the number of negotiation breakdowns 
and terminating unprofitable negotiations, it is argued that an agent can significantly 
improve their performance. 

4 Nonlinear Regression to Estimate an Agent’s Tactics 

This section will discuss how to use nonlinear regression to model the opponent’s 
tactic and to estimate parameters in the tactic. Among the three families of tactics in 
Section 2.2, the time-dependent and resource-dependent tactics are decision functions 
which can be represented respectively as 

ii
depedenttimet

ba ettkmaxminfx i += −
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ba ettkmaxminfx i += −
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In general, these two forms can be represented by  

iini etfy += );,,,( 10 θθθ L  (1) 

where yi is the previous offer ( ) generated by a decision function f at time tit
bax → i 

(i=0,1,…,m); θ0 , θ1 , … , θn are the parameters (min, max, k, tmax, β/µ) in the decision 
function. ei is the residual (or error) between offer yi from the opponent and the offer 
calculated by the predicting agent with ~θ0 , ~θ1 , … , ~θn, the estimate of parameters 
θ0 , θ1 , … , θn, respectively. Hereafter, “~” means “estimate of”. Equation (1) is 
nonlinear if f is nonlinear with respect to at least one parameter θr. Both time and 
resource dependent tactics are nonlinear. Equation (1) represents a system of 
nonlinear models.  
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The problem here is how to fit the curve f to the opponent's previous offers, yi 
(i=0,1,…,m). In other words, how to adjust the parameters θ0 , θ1 , …, θn to minimise 
the residuals e0 , e1 , …, en collectively? The matrix form of equation (1) is: 

eθFeFY +=+= )(),,,( 10 nθθθ L  (2) 

where θ is a vector of parameters, i.e., θ = (θ0,θ1,…,θn), fi(θ) = f(θ,ti). From equation 
(2), , the residual e  is the distance between offers Y from the opponent 
and the calculated offers  by the predicting agent. To minimise the distance 

 is to minimise its square  =  = ∑ , which is often referred to as the 

sum of squared residuals (SSR). To solve the minimum of SSR is to solve the 
nonlinear “normal” equations: 
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θ
F
∂
∂

=X  is the Jacobian matrix. The solving for θ is an iterative process:  

1. choose a starting value θ0 for θ;  
2. compute a ∆ such that )()( 0θ∆θ0 SSRSSR <+  to improve SSR;  
3. if the convergence measures are satisfied, the iteration process stops, 

, and ~θ is returned as the estimate of parameter vector θ; 
otherwise, let 

∆+← 0~ θθ
∆+← 00 θθ  and go to step 2.  

There are generally four methods to compute ∆: Steepest descent, Gauss-Newton, 
Newton, and Marquardt. Marquardt method is chosen in this research to compute ∆ in 
step 2 because it does not require the initial value, θ0, of parameters to be very close to 
the opponent’s actual value of θ. In Marquardt method, the update ∆ is calculated by 

eXXXdiagXX '))'('( −+=∆ λ  

The convergence measures chosen include the relative offset R measure with 
criterion level 1E-5 (the iteration process will stop when R ≤  1E-5), SSR measure 
with criterion level 1E-13 and the measure of no change in estimated parameters in 
consecutive iterations [7]. 

Although Marquardt Method does not require the initial guess θ0 to be very close 
to actual θ, this method does not work either if θ0 is far from θ. For this reason, “grid 
search” facility is designed that allows the predicting agent to provide multiple initial 
guesses for θ0.  

Mapping of a negotiation issue range [min, max]: The range of negotiation issues 
varies as the negotiation environment changes. Since the time and resource tactics are 
linear with respect to parameters min and max so that when [min, max] is linearly 
scaled to [min', max'], the estimate of min and max will be scaled in the same degree 
to the estimate of min' and max'. Hence, the experiments in this research can be 
designed with min and max in a specific range, say, [0, 1] or [0, 100]. 
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5 Heuristics about Predicting the Other Agent’s Tactic 

The estimate of the opponent’s parameter θ can be used to predict the opponent’s 
offer. Furthermore, the estimate of  tmax in ~θ is expected to be used to avoid 
breakdown of the negotiation, and the estimate of maxb (mins) in ~θ to be used to 
make a deal at opponent’s reservation value. However, the estimates of θ are usually 
different from each other since they are obtained from the various initial values for θ0. 
Consequently, different ~tmax and different ~max are obtained. Which ~tmax is the 
opponent’s actual deadline tmax, and which ~maxb (~mins) is the opponent’s actual 
reservation value maxb (mins)?  

From the predicting agent’s point of view, any ~θ of these estimates can be the 
opponent's actual parameter θ, since the curve determined by each ~θ fits to the 
opponent's previous offers very well (with SSR<1E-13). A decision problem arises as 
to how to choose the estimates of θ? One alternative is to choose the ~θ with the 
smallest ~maxb or the smallest ~ if the opponent is a buyer, or to choose the 
largest ~min

maxt
s if the opponent is a seller. The chosen ~maxb (~mins) and ~ are not 

necessarily the opponent’s actual max
maxt

b (mins) and . This choice can avoid risky 
~max

maxt
b (~mins) and ~ , but on the other hand, it makes the deal less ideal for the 

predicting agent. 

btmax

In order to find some kinds of indication or heuristics about the opponent's actual 
maxb (mins), tmax, and type, three groups of experiments were carried out. Heuristic 
knowledge is acquired about the typical tactics: Boulware time-dependent, Conceder 
time-dependent and resource-dependent tactics. Some settings are common to all the 
three groups of experiments: min = {10}, max = {20, 50, 80, 100}, k = {0.05, 0.2, 0.5, 
0.7, 0.9}, tmax = {10, 20, 50,100}. Since the estimates of θ are not influenced by the 
role assignment of the buyer or the seller except for the direction of approaching their 
reservation values, assume, hereafter, that the predicting agent is the seller, and the 
opponent is the buyer unless specifically noted otherwise.  

5.1 Heuristics about Boulware Time-dependent Tactics 

The Boulware tactics are determined by β = {0.02, 0.05, 0.067, 0.1, 0.2, 0.5}. There 
are 480 combinations in these settings, and each combination is a θ which determines 
an individual tactic. As each offer is generated by a tactic, the ~θ with the smallest 
estimated max is recorded. When a pattern is found, it is checked against all the ~θ 
obtained in the 480 tactics. The heuristics below indicates that the buyer's offer 
offer(tn) at tn is very close to their reservation value max and tn is at their deadline tmax 
when 

1. ~tmax ≥ 10 and | offer(tn) - ~max(tn) | < 0.2 and | tn - ~tmax | < 0.2 and  offer(tn)/(~ 
max(tn)) > 0.98; or 

2. ~tmax ≥ 10 and 0 ≤ tn - ~tmax < 0.1 and | offer(tn) - ~max | < 10% * offer(tn); or  
3. ~tmax < 10 and 0 ≤ tn - ~tmax < 0.1; or  
4. ~tmax < 10 and 0 ≤ tn - ~tmax< 0.9 and | offer(tn) - ~max(tn) | < 10% * offer(tn); or 
5. ~tmax < 10 and offer(tn) * 90% > ~max(tn-1) 
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With 95.5% of the 480 tactics the estimated max is very close to max in terms of 
|~max - max| ≤ 0.5 * ln(max - min). For example, if min =10, max =50, the estimate of 
max: ~max ≈ max ± 1.84, i.e., ~max ≈ 50 ± 1.84. 

5.2 Heuristics about Conceder Time-dependent Tactics 

There are 400 combinations or tactics in this group of experiments with β = {5, 10, 
15, 20, 40}. The experiments are conducted in the same procedures as in Section 5.1. 
Any of the following conditions can indicate the buyer's offer offer(tn) is very close to 
their reservation value max. 

1. | offer(tn) - ~max | < 0.5 * ln(~max); or 
2. ~α  > 0.90 to 0.98; or 
3. | tn - ~tmax | < 1, or  
4. | offer(tn) - offer(tn-1) | < ~max * 1%. 

5.3 Heuristics about Resource-dependent Tactics 

In this group of experiments, µ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. 800 tactics are tested 
with the finding that if 

1. ~max – ~ min ≤ 30 and SSR < 3; or 
2. ~max – ~min > 30 and SSR < 0.1 

then, ~max ≈ max with the precision of |~max - max| < 0.5 * ln(max - min). 
For instance, if min =10, max =100, ~max will be in the area 100 ± 2.25.  
The empirical relation between ~α (see Section 2.2.3) and µ is obtained and 

summarised in Table 1. By this relation, the opponent's resource tactic type can be 
determined as Impatient (µ=1), Steady (µ∈[2,5]), or Patient (µ∈[6,10]) [3].  

Table 1. Relation between the resource tactic type (µ) and ~α 

 Impatient or Steady Patient Very Patient Very Patient 
µ  1~5 6~7 8~9 10 
~α 0.4~1.0 0.3~0.4 0.2~0.3 0~0.2 

6 Application of Heuristics to Negotiation 

With the nonlinear regression ability and heuristics in the previous sections, a 
predicting agent’s extended reasoning mechanism and its performance are presented 
in the subsections below.  

6.1 The Reasoning Mechanism of the Predicting Agent 

The predicting agent and the opponent follow the protocol described in Section 2.2.1. 
Before the point when a sufficient number of the opponent's offers are available to 
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apply the learning approach, the predicting agent chooses a time-dependent tactic 
slightly tougher (β=0.5~0.8) than the Linear tactic. The predicting mechanism is 
started to estimate the opponent’s tactics after this point in a negotiation provided that 
no deal has been made.  

First, the agent predicts which tactic family the opponent’s tactic belongs to. Since 
the opponent, in this research, is assumed to adopt a tactic of the form in Section 2.2, 
the polynomial, exponential and resource forms of function are simultaneously 
predicted by the nonlinear regression method. Experiments show that forms other 
than the opponent’s actual tactic will be estimated with a larger SSR (>5 when [min, 
max] [0,100]). Therefore, it will enable the predicting agent to identify the 
opponent’s polynomial, exponential or resource tactic form. If it is not of these three 
forms, by assumption above, the opponent’s tactic is from the behaviour-dependent 
family. 

⊂

Once the opponent's tactic form is determined, the prediction then focuses on the 
parameters of the opponent’s time-dependent or resource-dependent tactic. With each 
offer received from the opponent, the estimate of the opponent's parameters is 
generated and used to predict the opponent’s offer. The heuristics is applied to the 
newly generated estimate in order to find the opponent’s actual max and tmax. Based on 
the prediction and the information about max and tmax, an appropriate response is sent 
to the opponent. 

This extended reasoning mechanism with prediction approach is referred to as 
prediction mechanism (Pred). 

6.2 Experimental Negotiations  

To test the performance of this learning approach, experimental negotiations have 
been designed with similar settings as in [3]: 

The settings of the normal, non-prediction tactic types: The three families of tactics 
are classified into nine tactic types as below:  

• Time-dependent: 
Conceder (CON): β = {20, 30, 40},   Linear (LIN): β = {1},   Boulware (BW): β 
= {0.025, 0.1, 0.2} 

• Resource-dependent: 
Impatient (IM): µ = {1},   Steady  (ST): µ = {2, 3, 5},   Patient (PA): µ = {6, 8, 
10} 

• Behaviour-dependent: 
Average Tit-For-Tat (AvgTFT): γ = {1, 2, 3, 5, 6, 8, 10}, 
Relative Tit-For-Tat (RelTFT): δ = {1, 2, 3, 5, 6, 8, 10}, 
Random Tit-For-Tat (RndTFT): δ = {1, 2, 3, 5, 6, 8, 10}, M = {1, 3} 

    Default behaviour of TFT: when the number of the other agent's previous offers 
is less than δ (γ), a time-dependent tactic with β=2 is adopted for the behaviour-
dependent tactics. 

The buyer’s minb = {10}, maxb = {20, 50, 100}, kb = {0.1, 0.9},  = {30, 45, 
60}. Ф is the overlapping degree between [min

btmax
b, maxb] and the seller's range [mins, 

maxs]. As in [3], maxb - minb = maxs - mins, and ks = kb. mins = minb + Ф * (maxb - 
minb), maxs = mins + (maxb - minb). Since the buyer's maxb and seller's mins are private 



Modelling Agents Behaviour in Automated Negotiation      11 

information, the fully overlapping is not a common case, therefore, in addition to Ф = 
0 (fully overlapping) in [3], two other overlapping degrees are included: Ф = 0.67 (1/3 
partial overlapping), Ф = 1.33 (non-overlapping), which make the performance of 
tactics more comprehensive.  

To eliminate the influence of the role of the buyer or the seller in the performance 
of a tactic, both the buyer and the seller will initiate a negotiation once with the same 
setting. Therefore, it can be assumed that the opponent is a buyer, who can adopt any 
of the nine non-prediction tactic types, and that the seller can have the nine non-
prediction tactic types and the predicting mechanism (Pred). 

To measure the performance of a tactic in a negotiation, a performance function is 
defined as the non-subjective, cost-adjusted function to measure the success of an 
agent a with negotiation thread  [5]: nt
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where the larger the value of the function f, the more successful the agent’s tactic. The 
Nash equilibrium point is included for fairness, and communication cost is 
modelled as = tanh( ) where comm_k is a cost constant [3]. 
comm_k is chosen as {0.002 (low), 0.01 (middle), 0.05 (high), 0.1 (very high)}. 
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Can the seller's predicting mechanism outperform the seller's other nine tactics 
against each of the buyer's nine tactic types?  

To answer this question, the negotiations were carried out between the seller's 10 
(9 non-prediction tactic types and the Pred) tactic types and the buyer's 9 non-
prediction tactic types. Hence, 90 (= 10 x 9) groups of negotiations were carried out 
between the buyer and the seller, and each of the 90 groups of negotiations includes a 
large number of negotiations. For example, there are 11664 negotiations between a 
BW buyer and a ST seller. 

6.3 Performance of the Predicting Mechanism  

The results of all the negotiations in the experiments demonstrate that with reasonable 
communication cost, the seller's predicting mechanism is 

1. as good as the seller's best tactic among the nine non-prediction tactic types if 
the buyer adopts a Tit-For-Tat tactic in {AvgTFT, RelTFT, RndTFT}; 

2. much better than the best tactic among the nine non-prediction tactic types if the 
buyer adopts a tactic in {CON, LIN, BW, IM, ST, PA}. 

Fig. 2 shows the seller's performance with predicting mechanism (Pred) and with 
the 9 non-prediction tactic types in negotiation with the buyer who adopts a tactic in 
{AvgTFT, RelTFT, RndTFT}. For each of the buyer's tactic type, only the 
performance of the seller's best non-prediction tactic types is shown against the 
performance of the prediction mechanism, since the comparison between the 
prediction mechanism and the best non-prediction tactic types is sufficient to show 
how well the prediction mechanism performs. For example, in negotiation with the 
buyer adopting an AvgTFT tactic, the seller's best tactic in performance on average is 
ST. Fig.2 shows, across all the buyer's tactics in {AvgTFT, RelTFT, RndTFT}, the 
seller's prediction mechanism is as good as the seller's best non-prediction tactics.  
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Fig. 2. The Relative Success of the Seller's Predicting Mechanism to the Seller's Non-

prediction Tactics in Negotiations with the Buyer's Tit-For-Tat Tactics 
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Fig. 3. The Relative Success of the Seller's Predicting Mechanism to the Seller's Non-

prediction Tactics in Negotiations with the Buyer's 6 Typical Tactics 

Fig. 3 shows that the seller's predicting mechanism does much better than the 
seller's best tactic among the 9 non-prediction tactic types against each of the buyer's 
tactic in {CON, LIN, BW, IM, ST, PA}. In Fig. 3, for example, if the buyer adopts a 
ST tactic, the best non-prediction tactic type available to the seller is LIN with which 
the seller scores -0.06. However, the seller can get a score of 0.05 by adopting the 
prediction mechanism (Pred). The increase, 0.11, in the seller's score will be a gain of 
£1,100 for the seller in the deal, for instance, if the seller's price range is [£10,000, 
£20,000]. 

7 Discussion 

The success of the predicting mechanism comes from its ability to predict the 
opponent's offer, and the heuristic knowledge in finding the opponent's reservation 

cmh296
from s2b_simplified_avg_performance(average of comm_k 0.002 and 0.01).xls
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value and deadline. When the opponent’s offer at the predicting agent’s deadline is no 
better than the predicting agent’ reservation value, withdrawing from the negotiation 
will save cost since the breakdown is doomed. If the utility gained between the 
opponent’s offer at predicting agent’s deadline and the opponent's current offer is less 
than the cost involved as shown below: 

)_*tanh()_*tanh()()(~ max
max kcommtkcommtxVxV n

st
b

t
b

s n
s

−≤− , 
accepting the current offer of the opponent is economically rational (The predicting 
agent is assumed to be seller here for explanation purpose).  The predicting agent can 
also wait for, or be aware of, the opponent’s deadline when it comes, then accepting 
the offer at the opponent’s deadline will reach a deal at the opponent’s reservation, 
and yet avoid breakdown of the negotiation.  

The performance in Fig.2 and Fig.3 are drawn with the cost constant comm_k in 
[0.002, 0.01] in which the cost is reasonable. The cost is 0.06 with comm_k =0.002 at 
round 30, and 0.3 with comm_k =0.01 at round 30, whilst 30 is the smallest deadline 
in the performance test setting tmax = [30, 60] in Section 6.2. 

If the cost constant is high (comm_k∈  [0.05, 0.1]), the cost is 0.905 with 
comm_k=0.05 at round 30, and 0.995 with comm_k =0.1 at round 30. The costs 0.905 
and 0.995 are very high when the maximum score (or utility) an agent can get from a 
deal is 1.0 Therefore, any delay in reaching a deal will be punished with a high cost. 
Since the learning mechanism will start until an enough number of offers available 
and learning itself will take time, the gain from the learning process will be much 
smaller than the cost incurred. Nevertheless, the information about the 
communication cost constant can be obtained from domain knowledge. In the case of 
high cost constant, the predicting agent can choose those nice tactics such as 
Conceder, Linear, Steady or Tit-For-Tat (with δ=1) to make deals with best 
performance. 

The choice of cost definition will also significantly influence the experiment 
results. The original definition of the performance function in [5] is not adopted in 
performance tests presented above because of its cost definition: = 

. The range of this cost definition is not within [0, 1], and the cost 
with comm_k =0.1 at round 15, for example, will be 1.5, which is very high relative to 
the maximum utility 1.0. The result of an experiment, with settings similar to [5], 
shows that Conceder, Impatient and Tit-For-Tat (δ=1) are more successful than the 
resource tactics recommended by [5].  

)( nt
aXτ
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8 Conclusion 

Decision functions have been proposed as negotiation tactics to overcome the 
limitations of game theory. These tactics produce offers based on the time available, 
the resource remaining or the opponent’s behaviour. When applying the findings of 
the existing research to negotiation, they require information about the other agent, 
either the probability distribution over the opponent’s reservation value and deadline, 
or the opponent’s tactic type. Knowing the information about the opponent will 
increase an agent’s performance in negotiation. However, these kinds of information 
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are private, particularly in competitive negotiation, where revealing own preference 
will render themselves disadvantage position. To handle the uncertainty about other 
agents, this paper presents an online learning approach to eliciting information about 
other agents with only the opponent’s previous offers.  

The nonlinear regression can directly predict offers and identify tactic type of the 
opponent. A large number of experiments were designed to obtain the heuristics about 
the estimates of the other agent’s reservation value and deadline. The performance 
tests show that the nonlinear regression prediction approach, working with the 
obtained heuristics, can indeed make the predicting agent get better deals than those 
tactics recommended by existing research. By balancing the future gain and cost, it 
can also avoid wasting time on unrewarding negotiation. This prediction approach can 
even get deals at a Boulware opponent’s reservation value whilst avoiding the 
breakdown of the negotiation.  

9 Future Work 

The prediction approach is being considered to apply to an opponent’s fixed weighted 
combination of tactics and changing weighted combination of tactics. When adopting 
a combination of tactics, an agent’s behaviour is perhaps not as characteristic as in the 
single tactic case and therefore may be more difficult to predict. However, by varying 
the weights on a set of orthogonal typical tactics, an agent’s combination of tactics 
can be imitated. 

Although the prediction approach is discussed around two-party negotiation in this 
paper, the possibility of incorporating it into other models of negotiations will be 
explored in the future.  
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