

Unsupervised data linking using a genetic algorithm

Technical Report kmi-11-2
September 2011

Andriy Nikolov and Mathieu d’Aquin and Enrico Motta

Abstract. As commonly accepted identifiers for data instances in se-
mantic datasets (such as ISBN codes or DOI identifiers) are often not
available, discovering links between overlapping datasets on the Web is
generally realised through the use of fuzzy similarity measures. Config-
uring such measures, i.e. deciding which similarity function to apply to
which data properties with which parameters, is often a non-trivial task
that depends on the domain, ontological schemas, and formatting con-
ventions in data. Existing solutions either rely on the user’s knowledge
of the data and the domain or on the use of machine learning to discover
these parameters based on training data. In this report, we present a
novel approach to tackle the issue of data linking which relies on the
unsupervised discovery of the required similarity parameters. Instead of
using labeled training data, the method takes into account several de-
sired properties which the distribution of output similarity values should
satisfy. The method includes these features into a fitness criterion used
in a genetic algorithm to establish similarity parameters that maximise
the quality of the resulting linkset according to the considered proper-
ties. We show in experiments using benchmarks as well as real-world
datasets that such an unsupervised method can reach the same levels
of performance as manually engineered methods, and how the different
parameters of the genetic algorithm and the fitness criterion affect the
results for different datasets.

1 Introduction

Establishing links between overlapping but separately constituted dataset still
represents one of the most important challenges to achieve the vision of the Web
of Data. Indeed, such a task is made difficult by the fact that different datasets
need to be ‘re-conciliated’ while not sharing commonly accepted identifiers (such
as ISBN codes), not relying on the same schemas and ontologies (therefore using
different properties to represent the same information) and often implementing
different formatting conventions for attributes (e.g., using “Motta, Enrico” as
the name of a person in one case, and “Enrico Motta” in the other).

When not realised manually (which is obviously not a scalable solution),
data linking therefore often relies on fuzzy similarity functions comparing rele-
vant characteristics of objects in the considered datasets. More precisely, a data
linking task can be specified as the evaluation of a decision rule establishing
whether two individuals should be considered equivalent, based on the value of
a function aggregating the similarity comparisons of some properties of these in-
dividuals. Configuring such a decision rule for a pair of datasets involves choosing
the relevant properties to be compared, the similarity functions that should be
used for each pair, the weight of each comparison, and the criterion determining
whether a pair of individuals with a given similarity value should be linked (i.e.
aggregation function and threshold).

Such choices are highly dependent on the domain of the data, the ontologies
used to represent the data, as well as the specific formatting conventions used in
the datasets. In most systems, establishing the appropriate decision rule is left

to the user, who needs to rely on his/her knowledge of the domain, of the data
in both datasets, and on his/her intuition regarding the performance of various
similarity functions in the considered linking situation. Other systems try to
alleviate the issue of establishing the decision rule for linking by using machine
learning techniques. They however require a substantial set of training data in
the form of pre-established links within a subset of the considered datasets. In
this report, we consider an approach based on a genetic algorithm to investigate
the question: can a suitable decision rule for linking two datasets be learned in
an unsupervised way, based only on the characteristics of the datasets and on
the distribution of similarity values amongst their instances?

A genetic algorithm relies on evolving a set of initially random solutions to
a problem, using selection and variation mechanisms that favor good solutions
over bad ones, according to a fitness criterion. To address the question above
using a genetic algorithm, we therefore rely on the assumption that such a fitness
criterion can be established for a data linking decision rule without having to rely
on a manually established gold standard. Following research in the area of record
linkage in databases, we devise such a criterion by relying on the distribution of
links and of similarity values generated by applying a particular decision rule.

To test our assumptions, we apply a genetic algorithm dedicated to estab-
lishing a data linking decision rule using an unsupervised fitness criterion as
described above on the benchmark datasets from the OAEI 2010 ontology align-
ment contest. We show that applying the learned decision rule for data linking
achieves results at the level of the best state-of-the-art tools, without the need
to configure linking parameters for each task. We also experiment with subsets
of real-world linked datasets to demonstrate the robustness of the approach to
different types of datasets in different domains and discuss the effects of some of
the parameters of the genetic algorithm on its behaviour in data linking tasks.

The remainder of this report is structured as follows. In section 2, we pro-
vide an overview of the basic notions of the coreference resolution problem and
relevant work in both Semantic Web and database research communities. Sec-
tion 3 describes our algorithm in detail. Section 4 describes the experiments we
performed in order to validate our approach. Section 5 concludes the report and
discusses directions for future work.

2 Problem Definition and Related Work

In this section, we specify the tasks of coreference resolution (also called data
linking) and of establishing the necessary decision rule, together with a brief
description of the relevant existing work.

2.1 Coreference Resolution

The problem of coreference was originally studied in the database community
where it is known as record linkage or object identification [1]. With the devel-
opment of the linked data initiative, it gains importance in the Semantic Web

community where it is studied under the names of coreference resolution [2], ref-
erence reconciliation [3], and link discovery [4]. The coreference resolution task
can be defined as follows.

Definition 1: Let D1 and D2 represent two datasets, each one containing a
set of individuals Ii and structured according to a schema Oi. Each individual
Iij ∈ Ii describes some real world entity ωj. Two individuals are said to be
equivalent Ij ≡ Ik if they describe the same entity ωj = ωk according to a chosen
identity criterion. The goal of the coreference resolution task is to discover all
pairs of individuals {(I1i, I2j)|I1i ∈ I1, I2j ∈ I2} such that ω1i = ω2j. In the
context of linked data, datasets Di are represented by RDF graphs. Individuals
Ii ∈ Ii are identified by URIs and described using the classification schema and
properties defined in the corresponding ontology Oi.

Existing techniques solving this task can be divided into two main categories:
individual matching and dataset matching. We essentially focus on individual
matching in this report. Dataset matching techniques are built on top of indi-
vidual matching ones: they take as input two datasets as a whole together with
the initial set of mappings produced by individual matching and further refine
them. These techniques take into account additional available information such
as relations between individuals [3], axioms defined in the ontological schema [5],
[6], and mutual impact of different mappings [7].

The individual matching task can be defined as follows.
Definition 2: Let I1i ∈ I1 and I2j ∈ I2 represent two individuals in instance

sets I1 and I2. The individual matching task takes I1i and I2j as input and makes
a decision whether I1i ≡ I2j (in which case they are said to be matching) or not.
This decision is made based on the comparison of the profiles of two individuals.
A profile P (I) is defined as a set of pairs {(ai, Vi)}, where ai represent attributes
describing an individual (e.g., name, age, colour, etc.), each of which has a
set of values Vi. The output of individual matching is a set of mappings M =
{(I1i, I2j)} believed to represent equivalent individuals I1i ≡ I2j.

Most individual matching techniques follow the approach proposed in a sem-
inal report by Fellegi & Sunter [8], in which the decision is based on a similarity
function sim(P (I1), P (I2)) which returns a degree of confidence that I1 ≡ I2.
The similarity function commonly takes the form of aggregated similarity over
attributes sim(P (I1), P (I2)) = fagg({simi(V1i, V2i)}), where fagg is an aggre-
gation function and simi is a comparison function, which returns a degree of
similarity between two values of the attribute ai. The decision rule then can take
the form of comparing the confidence degree returned by the similarity function
with a threshold t. A mapping (I1, I2) is returned if sim(P (I1), P (I2)) ≥ t.

2.2 Establishing a Decision Rule for Individual Matching

As can be seen from the description above, the key component of a coreference
resolution task based on individual matching is the decision rule. For a given
pair of datasets to link, a decision rule has to be established that incorporate
comparisons between relevant pairs of properties in the two datasets, using sim-
ilarity functions appropriate to the forms of the values of these properties, as

well as weights and a thresholds to obtain an adequate discriminative ability for
the decision rule.

Some systems assume that a pre-established, generic similarity measure can
be employed across domains. This approach is often followed by systems targeted
for the global scale coreference resolution (e.g., OKKAM [9]), generic ontology
matching systems (e.g., RiMOM [10]), or systems which primarily rely on the
dataset matching stage (e.g., CODI [5]).

However, in most other cases, a dedicated decision rule has to be established
for each coreference resolution task (i.e., each pair of datasets to link). Exist-
ing coreference resolution systems in the Semantic Web area take two different
approaches to realise this:

Manual configuration where the decision rule is specified by the user. This
approach is taken by the popular SILK system [4]. Besides requiring user
effort, the clear disadvantage of such an approach is that it relies on extensive
knowledge from the user of the structure and content of the two datasets to
link, as well as on a reasonable level of intuition regarding the performance
of (often complex) similarity functions in a particular situation.

Learning from training data where the appropriate decision rule is produced
by analyzing the available labeled data. This method is followed, for exam-
ple, by the ObjectCoref system [2]. This alleviates the need for user input to
establish the decision rule, but requires the availability of a substantial set
of robust training data.

Here we investigate a third category of approaches that relies on the charac-
teristics of the datasets and of the similarity distributions resulting from com-
paring them to establish high performing decision rules in an unsupervised way.
Several solutions in the database research community proposed to use the dis-
tribution features of similarity functions. For example, in [11] individuals are
clustered into matching and non-matching classes based on the structure of their
neighborhood rather than on simple threshold filtering. Zardetto et al [12] pro-
posed to use prior knowledge about the features of the similarity distribution –
namely, that correct mappings are dominant in the area of high similarity values
and that matches are very rare in comparison with non-matches. These features
are used to build a mixture model, which is later used for classifying candidate
mappings into matching and non-matching.

The method described in this report proposes to use a genetic algorithm
guided by a fitness criterion using similar characteristics to assess the expected
quality of a decision rule, and of the derived set of links. Our method goes a
step further as it uses distribution features to choose an appropriate similar-
ity function for a given matching task as well as a suitable filtering criterion,
rather then relying on given similarity functions. Hence, producing a solution
requires selecting multiple parameters of the decision rule simultaneously, such
as similarity functions, comparable attributes, and weights.

For such problems where a suitable complex function has to be found based
on its desired output, genetic algorithms are known to perform well on many

practical tasks [13]. The idea here is to use such an approach to evolve a pop-
ulation of candidate solutions (i.e., decision rules) using selection and variation
mechanisms to favor the “fittest” solutions in each generation, therefore presum-
ably converging to decision rules that can be optimally applied to link the two
given datasets.

3 Algorithm

Applying a genetic algorithm to the problem of optimizing a decision rule re-
quires solving three issues: how relevant parameters of a decision rule are encoded
as a set of genes, what fitness measure to use to evaluate candidate solutions,
and how to use selection and variation operators to converge on a good solution.

3.1 Genetic algorithms: main concepts

Definition 3: Let Ci represent a candidate solution to a given optimization task
T 1. Assume that Ci can be encoded as a set of numeric parameters. Then, the
term gene gij denotes the jth parameter of the candidate solution Ci, genotype
or chromosome G(Ci) =< gi1, . . . , gin > denotes a set of genes representing
a candidate solution Ci, and population G = {G1, . . . GN} represents a set of
N chromosomes encoding candidate solutions for the task. A fitness function
Ffit(Ci) is a function which can be used to evaluate, how close the candidate
solution Ci is to the optimal one.

An initial population is used as a pool of candidates, from which the algo-
rithm selects the best chromosomes according to the fitness function. In order to
find a solution which optimizes the fitness function, the algorithm updates the
initial population by using selection and variation operators:

– Selection chooses a subset of chromosomes in the original population to be
used in the creation of the new one.

– Variation changes the genes of the selected chromosomes to generate new
candidate solutions from the old ones. Commonly used variation operators
include crossover and mutation:
• Crossover recombines elements of several “parent” chromosomes to pro-

duce several new chromosomes (or “children”)
• Mutation produces a new chromosome by randomly tweaking the genes

of the original one.

The updated population is created by applying these operators to selected chro-
mosomes from the original one. Then, the same steps are performed for the
updated population, and the algorithm continues iterating until the optimal so-
lution (or one sufficiently close to the optimum) is produced or a termination

1 The term “individual” is used both in the Semantic Web domain to denote ontologi-
cal instances and in the evolutionary computation area, where it refers to candidate
solutions. To avoid confusion, we use it only in its first sense, while using the term
“candidate solution” when talking about the output of the genetic algorithm.

condition is satisfied: e.g. maximal number of iterations is reached or the fit-
ness of the population does not improve for a long time. The candidate solution
Cbest = argmax(Ffit(Ci)) is returned by the algorithm as its output.

3.2 Representing individual matching in terms of a genetic
algorithm

To apply a genetic algorithm to the individual matching problem, we need to
represent candidate decision rules as a set of genes. Similarly to many existing
approaches (see section 2), we represent a decision rule as a comparison of an
aggregated attribute similarity function with a threshold.

Definition 4: A decision rule for an individual matching task is defined
as: sim(P (I1), P (I2)) ≥ t where sim(P (I1), P (I2)) is the similarity function
comparing profiles of two individuals. This similarity function takes the form

sim(P (I1), P (I2)) = fagg(w11sim11(V11, V21), . . . , wmnsimmn(V1m, V2n))

– simij is the function which measures similarity between the values of the
attributes a1i of P (I1) and a2j of P (I2),

– wij is a numeric weight (0 ≤ wij ≤ 1),
– fagg is an aggregation function,
– t is a threshold (0 ≤ t ≤ 1)

Each of these parameters is represented by a gene in the following way:

– simij are encoded as nominal values representing corresponding attribute
similarity functions. If a pair of attributes (a1i, a2j) is not compared, then
simij is set to nil. We included a number of character-based functions (edit
distance, Jaro, Jaro-Winkler, Smith-Waterman, Monge-Elkan, and I-Sub)
and the corresponding token-based similarity metrics. The latter divide both
string values into sets of tokens, then compare each pair of tokens using a
character-based similarity function and try to find the best match between
them.

– Weights of each attribute comparison pair wij and the threshold t are en-
coded using their real values.

– fagg is encoded as a nominal value representing one of two types of aggre-

gation functions: weighted average avg(P (I1), P (I2)) =

∑
wijsimij(a1i,a2j)∑

wij

and maximum max(P (I1), P (I2)) = max({wijsimij(a1i, a2j)}). In the lat-
ter case the weights wij can only take values 0 or 1. The weighted average
allows capturing “composite keys” where identity is determined based on
a combination of properties, while the maximum is better suited for tasks
where the profile includes several discriminative attributes (like both the
social security ID and the phone number).

These genotypes are evaluated by applying the decision rule to the matching
task and calculating the pseudo-F-measure F∼ metric.

3.3 Evaluating decision rules: pseudo-F-measure

The crucial component of the method is the fitness function which would allow
estimating the quality of a set of mappings without possessing labeled data or
involving the user. Under these conditions it is not possible to measure the qual-
ity of the results accurately. However, there are indirect indicators corresponding
to “good characteristics” of sets of links which can be used to assess the fitness
of a given decision rule. To establish such indicators, we rely on the following
assumptions about the matching task and the distribution of similarity values
returned by the function sim(P (I1), P (I2)):

1. While different URIs are often used to denote the same entity in different
repositories, a URI can be expected to be a unique identifier within one
dataset. If this condition holds for an instance set I, any individual should
be mapped to at most one individual in this dataset: ∀Ii : |{II |(Ii, II) ∈
M, II ∈ I}| ≤ 1.

2. If Assumption 1 holds, then for two sets of individuals I1, I2 the maximum
number of correct mappings is |M | ≤ min(|I1|, |I2|).

3. A meaningful similarity function produces results in the interval {0..1} and
returns values close to 1.0 for pairs of matching individuals.

Traditionally, the quality of the matching output is evaluated by comparing it
with the set of true mappings M t and calculating the precision p and recall r

metrics. Precision is defined as p = |tp|
|tp|+|fp| , where tp is a set of true positives

(mappings m = (I1, I2) such that both m ∈ M and m ∈ M t) and fp is a set

of false positives (m ∈ M , but m /∈ M t). Recall is calculated as r = |tp|
|tp|+|fn| ,

where fn is a set of false negatives (m /∈ M , but m ∈ M t). In the absence
of gold standard mappings, we use the assumptions 1 and 2 to formulate the
pseudo-precision and pseudo-recall measures in the following way:

Definition 5: Let M represent a set of mappings (Ii, Ij) between two sets
of individuals I1, I2 such that Ii ∈ I1, Ij ∈ I2. Then, pseudo-precision

is the value p∼ =
|{Ii|∃Ij :(Ii,Ij)∈M}|∑

i
|{Ij |(Ii,Ij)∈M}|

, and pseudo-recall is the value r∼ =

|M |
min(|I1|,|I2|) .

In an ideal case where p = 1, if Assumption 1 holds, then p∼ = 1: of two
mappings from the same individual one is necessarily an error. Similarly, in case
where r = 1, the number of returned mappings will be equal to the size of the
overlap between two instance sets |M | = no = |I1 ∩ I2|, and the pseudo-recall

value r∼ = |M |
no

= 1. However, estimating the true recall is problematic since no
is not known in advance. In accordance with Assumption 2, no ≤ min(|I1|, |I2|),
while no = min(|I1|, |I2|) if one instance set is a subset of another. Incorrect
estimation of no can be misleading for the genetic algorithm: it can result in
“lenient” decision rules being favored and, in consequence, to many false positives
in the resulting solution. To deal with such cases, we assume the ideal scenario
where no = min(|I1|, |I2|), but reduce the impact of incorrect recall estimations
in the final fitness function.

A standard metric combining precision and recall is the F-measure Fβ =
(1+β2)·p·r
β2·p+r , where β characterizes the preference of recall over precision, and β =

1 means equal importance of both. To reduce the impact of recall, we used
β = 0.1 and the pseudo-F-measure F∼0.1 = 1.01p∼·r∼

0.01·p∼+r∼ . In this way, solutions
which increase precision are favored, while recall is only used to discriminate
between solutions with similar estimated precision. This “cautious” approach is
also consistent with the requirements of many real-world data linking scenarios,
as the cost of an erroneous mapping is often higher than the cost of a missed
correct mapping.

In order to incorporate Assumption 3, the final fitness function gives a pref-
erence to the solutions which accept mappings with similarity degrees close to
1: F∼fit = F∼0.1 · (1 − (1 − simavg)

2). In this way, the fitness function is able
to discriminate between such decision rules as avg(0.5 · jaro(name, label), 0.5 ·
edit(birthY ear, yearOfBirth)) ≥ 0.98 and avg(0.05 · jaro(name, label), 0.05 ·
edit(birthY ear, yearOfBirth), 0.9·edit(name, yearOfBirth)) ≥ 0.098. Although
these two rules would produce the same output in most cases, comparing ir-
relevant attributes (like name and yearOfBirth) is not desirable, because it
increases a possibility of spurious mappings without adding any value.

In the general case, high values of p∼ and r∼ do not strictly imply high values
of p and r: e.g., we can imagine two lists of people where the social security ID
of each person in the first list is equivalent to the phone number of exactly
one person in the second list. Then, a function based on comparing these two
attributes will result in both p∼ = 1 and r∼ = 1, while both p = 0 and r = 0.
However, in practical tasks we can expect that (a) comparable attributes in
two datasets have similar distribution of values, and (b) datasets selected for
matching have a substantial degree of overlap.

3.4 Obtaining the optimal solution: genetic algorithm

The algorithm takes as input two instance sets I1 and I2 and two sets of potential
attributes A1 and A2. Each set of attributes Ai includes all literal property values
at a distance l from individuals in Ii. In our experiments we used l = 1, however,
also including the paths of length 2 if an individual was connected to a literal
through a blank node. In order to filter out rarely defined properties, we also

remove all attributes aij for which
|{P (Ii)|aij∈P (Ii),Ii∈I}|

|I| < 0.5.

As the first step, the algorithm initializes the population of size N . For the
initial population, all values of the genotype are set in the following way:

– A set of k pairs of attributes (a1i, a2j) is selected randomly from the corre-
sponding sets A1 and A2.

– For these pairs of attributes the similarity functions simij and the corre-
sponding weights wij are assigned randomly while for all others are set to
nil.

– The aggregation function and the threshold are initialized with random val-
ues, and the weights are normalized so that

∑
wij = 1.

All initial solutions only compare a single pair of attributes (k = 1): this is done
to identify highly discriminative pairs of attributes at the early iterations, and
then improve these solutions incrementally.

Each iteration of the algorithm consists of two stages: selection and repro-
duction. At the selection stage, each candidate solution is applied to produce
mappings between individuals from I1 and I2, and the F∼fit fitness measure is
calculated. This fitness measure is used for the selection of candidate solutions
for reproduction. Our algorithm uses the standard roulette wheel selection oper-
ator: the probability of a chromosome being selected is proportionate to its F∼fit
fitness. At the reproduction stage, a new population of chromosomes is gener-
ated by three different operators: elitist selection, crossover, and mutation. In
the new population, the proportion of chromosomes produced by each operator
is proportional to its rate: elitist selection rate rel, crossover rate rc, and mu-
tation rate rm (rel + rc + rm = 1). Elitist selection copies the best subset of
chromosomes from the previous population. The crossover operator takes two
parent chromosomes and forms a pair of “children”: each gene of the parent is
passed to a randomly chosen child, while another child inherits a corresponding
gene of the second parent. Finally, mutation modifies one of the genes of the
original chromosome in one of the following ways:

– Adding or removing a comparison between attributes with a probability pmatt.
The operator either changes the similarity function for a pair of attributes to
nil or selects a random similarity function and weight for a pair of attributes
not compared in the original chromosome. The probability of adding a com-
ponent (versus removing one) is calculated as padd = 1

n+ , where n+ is the
number of non-nil similarity comparisons in the original solution.

– Changing one of the weights wij for a pair of attributes where simij 6= nil,
with a probability pmwgt. The value of the change is calculated as 0.8·rnd+0.2

n+ ,
where rnd is a random number between 0 and 1.

– Changing a non-nil similarity function for a pair of attributes into a ran-
domly selected one with a probability pmsym.

– Modifying the threshold value with the probability pmt : the algorithm decides
whether the current threshold should be increased or decreased with the
probability 0.5. The new threshold is set as tnew = told ± ∆t, where ∆t =
rnd · (1− p∼)(1− told) for increase and rnd · (1− r∼)told for decrease. The
rationale behind this is to make bigger steps if precision/recall values are far
from desired.

– Changing the aggregation function with pmagg.

Only one action is selected for each mutated genotype, and
∑
pmi = 1.

At the new iteration, chromosomes in the updated population are again eval-
uated using the F∼fit fitness function, and the process is repeated. The algorithm
stops if the pre-defined number of iterations niter is reached or the algorithm
converges before this: i.e., the average fitness does not increase for nconv gener-
ations. The phenotype with the best fitness in the final population is returned
by the algorithm as its result.

4 Evaluation

To validate our method and the assumptions on which it is based, we performed
experiments with two types of datasets. First, we tested our approach on the PR
benchmark datasets, which were used as a benchmark in the instance match-
ing track of the OAEI 2010 ontology matching competition2, to compare our
method with state-of-the-art systems and study the effects of different param-
eter settings. Second, we used several datasets extracted from the linked data
cloud to check whether the method can be reused in other real-world scenarios,
and to investigate the effect of the characteristics of the datasets on the results.
This section summarises the results obtained and the key points of discussion
related to the use of our approach for unsupervised coreference resolution. We
first summarise the default settings for these experiments.

4.1 Settings

As discussed above, a genetic algorithm starts with an initial population of ran-
dom solutions, and iteratively create new generations through selection, muta-
tion and crossover. In our experiments, we used the following default parameters:

– rates for different recombination operators: rel = 0.1, rm = 0.6, and rc = 0.3.
– rates for different mutation options: pmatt = 0.3, pmwgt = 0.15, pmsym = 0.15,
pmt = 0.3, pmagg = 0.1.

– termination criterion: either the limit of iterations niter = 20 is reached
or the average fitness of the population does not increase for nconv = 10
iterations.

We implement our method on top of our KnoFuss architecture for data link-
ing [14]. Each candidate decision rule is used as an input of the KnoFuss tool
to create the corresponding set of links. To reduce the computation time, an
inverted Lucene3 index was used to perform blocking and pre-select candidate
pairs. Each individual in the larger dataset was indexed by all its literal prop-
erties. Each individual in the smaller dataset was only compared to individuals
returned by the index when searching on all its literal properties, and pairs
of compared individuals were cached in memory. We call the combined system
X-KnoFuss.

4.2 Benchmark test

The benchmark contains three test cases:

– Person1 and Person2 test cases originally created in the FEBRL project4.
Two pairs of datasets contain records of people, which were artificially dis-
torted to create the test case for matching tools.

2 http://oaei.ontologymatching.org/2010/im/index.html
3 http://lucene.apache.org
4 http://sourceforge.net/projects/febrl/

Table 1. Comparison of F1-measure with other tools on the benchmark datasets.

Dataset KnoFuss+GA ObjectCoref ASMOV CODI LN2R RiMOM FBEM

Person1 1.00 1.00 1.00 0.91 1.00 1.00 N/A

Person2 0.99 0.95 0.35 0.36 0.94 0.97 0.79

Restaurant (OAEI) 0.78 0.73 0.70 0.72 0.75 0.81 N/A

Restaurant (fixed) 0.98 0.89 N/A N/A N/A N/A ≈0.96

– Restaurants. The test case includes two datasets containing data about
restaurants from two sources with 112 mappings between them. The bench-
mark is based on the test case included in the RIDDLE repository5. Two
versions of this dataset exist: the version originally used in the OAEI 2010
evaluation which contained a bug (some individuals included in the gold stan-
dard were not present in the data), and the fixed version, which was used
in other tests (e.g, [9], [2]). To be able to compare with systems which used
both variants of the dataset, we also used both variants in our experiments.

We compared our algorithm with the systems participating in the OAEI 2010
instance matching track as well as with the FBEM system [9], whose authors
provided the benchmark datasets for the competition. We report in Table 16 on
the performance of the KnowFuss system using decision rules learned through
our genetic algorithm (noted KnowFuss+GA) as the average F1-Measure ob-
tained over 5 runs of the algorithm with a population size N = 1000. As can be
seen from Table 1, the solution produced by the genetic algorithm managed to
achieve the highest F1-measure on 3 out of 4 datasets and the second highest
F1-measure on 1 out of 4. These results verify our original assumptions that (a)
the fitness function based on the pseudo-F-measure can be used as an estimation
of the actual accuracy of a decision rule and (b) the genetic algorithm provides
a suitable search strategy for obtaining a decision rule for individual matching.
Examples of produced decision rules are provided in Table 2. We observed that
the algorithm took less time on identifying discriminative pairs of properties and
the aggregation function and more on tuning weights and attribute similarity
functions.

To test the robustness of the results achieved by the algorithm with different
settings, we performed tests on the benchmark datasets varying the popula-
tion size N , crossover rate rc, and mutation rate rm. Surprisingly, varying the
crossover rate and the mutation rate did not lead to significant changes in the
results, except for extreme values. These parameters mostly affected the number
of generations needed to converge to the optimal solution. Figure 1 shows the
average F1-measure achieved by the algorithm with different population sizes.
As expected, increasing the size of the population also improves the average

5 http://www.cs.utexas.edu/users/ml/riddle/data.html
6 In [9] only rounded numbers for precision and recall are provided for the Restaurant

dataset: 0.98 and 0.95 respectively.

Table 2. Example decision rules found by the algorithm with N = 1000 (weights and
threshold are rounded).

Test case Similarity function Threshold
Person1 max(tokenized-jaro-winkler(person1:soc sec id;person2:soc sec id);

monge-elkan(person1:phone numer;person2:phone numer)) ≥0.87
Person2 max(jaro(person2:phone numer;person1:phone numer);

jaro-winkler(person2:soc sec id;person:soc sec id)) ≥0.88
Restaurants avg(0.22*tokenized-smith-waterman(restaurant1:phone number;
(OAEI) restaurant2:phone number);

0.78*tokenized-smith-waterman(restaurant1:name;restaurant2:name)) ≥0.91
Restaurants avg(0.35*tokenized-monge-elkan(restaurant1:phone number;
(fixed) restaurant2:phone number);

0.65*tokenized-smith-waterman(restaurant1:name;restaurant2:name)) ≥0.88

performance and robustness of the algorithm. Choosing a very small N can lead
the algorithm to converge on sub-optimal solutions.

Fig. 1. Average F1-Measure achieved on OAEI datasets for different population sizes
N .

4.3 LOD datasets

To test the reusability of our method in different real-world scenarios, we have
defined the following three matching tasks:

Music contributors. As a source dataset, we selected a list of music contrib-
utors from the LinkedMDB dataset7. This dataset of 3995 individuals was

7 http://www.linkedmdb.org/

matched against the set of all people from DBPedia8 (363751 individuals).
The gold standard was constructed manually and included 1182 mappings.

Book authors. To construct this dataset, we extracted a set of 1000 individ-
uals describing book authors from the BNB dataset9. This dataset was also
matched against the set of all people from DBPedia. The gold standard was
constructed manually and included 219 correct mappings.

Research papers. To generate a matching task with a larger number of reli-
able gold standard mappings, we used a subset of 10000 research publications
represented in the L3S-DBLP dataset10 (out of the snapshot of 366113 pub-
lications included in the BTC 2010 dataset11). For these publications, we
extracted their RDF descriptions from the DOI web-site12. We used equiva-
lent DOI codes to create the gold standard and then removed corresponding
properties from respective datasets to prevent the algorithm from using them
as an easy solution.

On each of these datasets, we applied the algorithm with the same default set-
tings as used in the benchmark tests. In order to test the degree to which the
F∼fit fitness function can be used as an estimation of the actual quality of re-
sults, we performed the experiments using two different fitness functions: the
unsupervised F∼fit fitness function and the actual F1-measure produced using
the gold standard dataset. The latter case represents an ideal scenario, in which
a complete set of labeled data is available in advance, and the algorithm only
has to produce an optimal decision rule which would approximate this data. For
Music contributors and Book authors, we varied the population size N in order
to estimate the necessary number of candidate solutions which the algorithm has
to test before achieving stable performance. The results for these datasets are
summarised in Table 3, which shows average precision, recall, and F1-measure
achieved using both supervised and unsupervised fitness functions. Moreover, it
reports the standard deviation of F1 measure σF1 over 5 runs and the time of a
single run for the unsupervised case13. For the Music contributors test case, the
results produced using F∼fit and F1 are very close. Moreover, the use of the F∼fit
fitness function leads to higher precision than F1. This is a consequence of the
bias for precision which is encoded in the F∼fit fitness function. In the case of Book
authors, the effect of the population size is more substantial. Having N = 50 and
N = 100 was not sufficient for the algorithm to achieve stable behaviour, i.e.
out of several runs, the algorithm would sometimes converge on a sub-optimal
solution. For N = 500, the algorithm has shown robust behaviour: the differ-

8 http://dbpedia.org
9 http://www.archive.org/details/Bibliographica.orgBnbDataset. From the first part

of the dump, we selected 1000 authors with the highest number of published books,
as they are more likely to be represented in DBPedia

10 http://dblp.l3s.de/
11 http://km.aifb.kit.edu/projects/btc-2010/
12 http://dx.doi.org/
13 Experiments were performed on a Linux desktop with two Intel Core 2 Duo proces-

sors and 3GB of RAM

Table 3. Results for the Music contributors and Book authors datasets.

Dataset Pop. size N
F1-fitness (ideal case) F∼

fit-fitness (unsupervised)
Precision Recall F1 Precision Recall F1 σF1 Time (s)

Music 50 0.92 0.92 0.92 0.90 0.90 0.90 0.021 520
contributors 100 0.91 0.93 0.92 0.92 0.91 0.92 0.003 931

500 0.91 0.93 0.92 0.92 0.92 0.92 0.003 4197
Book 50 0.90 0.93 0.91 0.66 0.69 0.68 0.022 753
authors 100 0.98 0.95 0.97 0.78 0.89 0.82 0.13 1222

500 0.99 0.98 0.98 0.91 0.91 0.91 0.009 7281

ence between the best and the worst F1-measure was about 0.02, achieving high
performance.

It can be noticed however, that in the case of Book authors, the performance
obtained with the unsupervised F∼fit fitness function was lower than the one
obtained with the F1-Measure. In this case, the F∼fit fitness function could not
discriminate between several similar decision rules with the same characteristics
of the output: all of them compared person’s name (foaf:name and rdfs:label in
BNB and DBPedia respectively) and the date of birth (property chain {bio:event,
bio:date} and the property dbpedia:birthDate). These alternative decision rules
did not violate the 1-to-1 mapping restriction and returned sets of results of
similar sizes. However, the proportion of actually correct results in these sets
varied. To overcome such issues, the use of domain knowledge can be beneficial:
for instance, evaluating mappings with respect to domain-specific constraints
can potentially increase the sensitivity of the fitness function and filter out sub-
optimal solutions.

Table 4. Results obtained for the Research papers dataset (for all sample sizes, pop-
ulation size N = 100 was used).

Sample size
F1-fitness (ideal case) F∼

fit-fitness (unsupervised) Complete set
Precision Recall F1 Precision Recall F1 σF1 Time (s) Precision Recall F1

50 0.50 0.76 0.60 0.58 0.36 0.44 0.063 162 0.68 0.22 0.33
100 0.95 0.88 0.91 0.998 0.72 0.83 0.068 255 0.995 0.68 0.81
500 0.96 0.85 0.90 0.99 0.73 0.84 0.046 842 0.98 0.75 0.85
1000 0.95 0.88 0.91 0.99 0.67 0.79 0.065 3667 0.997 0.71 0.83

For the Research papers dataset (Table 4), we trained the algorithm on several
samples taken from the DOI dataset and then applied the resulting decision rules
to the complete test case (10000 individuals in the DOI dataset). This was done
to emulate use cases involving large-scale repositories, in which running many
iterations of the genetic algorithm over complete datasets is not feasible. From
Table 4 we can see that the performance of the unsupervised fitness function
of F∼fit is slightly lower. The main reason for this is the preference for precision
at the expense of recall, which is encoded in the fitness function. As a result,
precision of the solutions produced by the unsupervised algorithm was always
higher than the precision of the solutions optimal with respect to the F1-measure.

We can also see that very small sample sizes (50) lead to unstable performance in
the same way as small population sizes. However, starting from 100 individuals
the algorithm achieved stable performance. Applying the resulting decision rules
to the complete dataset also produced results with precision and recall values
similar to the ones achieved on the partial sample.

The datasets and test results are available for download from our website14.

5 Conclusion and future work

In this report, we proposed a method which exploits expected characteristics
of “good” sets of mappings to estimate the quality of results of the individual
matching task. We formalised these characteristics as a pseudo-F-measure metric
and used it as a fitness function for a genetic algorithm, which derives a suitable
decision rule for a given matching task. Experiments, which we performed with
both benchmark and real-world datasets, have validated our initial assumptions
and have shown that the method is able to achieve accuracy at the level of
the top-performing state-of-the-art data linking systems without requiring user
configuration, training data, or external knowledge sources.

We plan to use the results presented in this report to pursue several promising
research directions. One of these directions involves combining our approach with
more knowledge-involving dataset matching methods. On the one hand, dataset
matching systems have to rely on individual matching techniques to provide
initial sets of mappings for refining. For such systems, using initial mappings of
better quality can be beneficial. On the other hand, domain knowledge can be
used to improve the unsupervised fitness functions. for example to reduce the
fitness of decision rules whose results violate ontological restrictions.

The second potential direction involves combining individual matching with
schema alignment. In order to minimise the number of incorrect links between
individuals, it is important to select the datasets for matching appropriately:
for example, in our Music contributors test case, matching instances of the
class linkedmdb:music contributor with the specific class dbpedia:Artist instead
of generic dbpedia:Person would avoid producing false positive mappings. The
problem of selecting appropriate subsets of data for matching was a topic of our
previous work [15], where we proposed the use of a semantic index for this task.
We plan to investigate to which extent our unsupervised method can benefit
from utilizing schema mappings, and, on the other hand, whether distributions
of results produced by unsupervised individual matching can be used to produce
mappings between schema terms: classes and properties.

6 Acknowledgements

Part of this research has been funded under the EC 7th Framework Programme,
in the context of the SmartProducts project (231204).

14 http://kmi.open.ac.uk/technologies/knofuss/knofuss-GA-tests.zip

References

1. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. IEEE Transactions on Knowledge and Data Engineering 19(1) (2007) 1–16

2. Hu, W., Chen, J., Qu, Y.: A self-training approach for resolving object coreference
on the semantic web. In: Proceedings WWW 2011. (2011) 87–96

3. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex informa-
tion spaces. In: SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data. (2005)

4. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links
on the Web of Data. In: Proceedings ISWC 2009, Washington, DC, USA (2009)
650–665

5. Noessner, J., Niepert, M., Meilicke, C., Stuckenschmidt, H.: Leveraging termino-
logical structure for object reconciliation. In: Proceedings ESWC 2010, Heraklion,
Crete, Greece 334–348

6. Säıs, F., Pernelle, N., Rousset, M.C.: Combining a logical and a numerical method
for data reconciliation. Journal of Data Semantics 12 (2008)

7. Cudré-Mauroux, P., Haghani, P., Jost, M., Aberer, K., de Meer, H.: idMesh:
Graph-based disambiguation of linked data. In: Proceedings WWW 2009, Madrid,
Spain, ACM (2009) 591–600

8. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of American
Statistical Association 64(328) (1969) 1183–1210

9. Stoermer, H., Rassadko, N., Vaidya, N.: Feature-based entity matching: The FBEM
model, implementation, evaluation. In: Proceedings CAISE 2010. (2010) 180–193

10. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A dynamic multistrategy ontology
alignment framework. IEEE Transactions on Knowledge and Data Engineering
21(8) (2009) 1218–1232

11. Chaudhuri, S., Ganti, V., Motwani, R.: Robust identification of fuzzy duplicates.
In: Proceedings ICDE 2005. (2005) 865–876

12. Zardetto, D., Scannapietro, M., Catarci, T.: Effective automated object matching.
In: Proceedings ICDE 2010. (2010) 757–768

13. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer
(2003)

14. Nikolov, A., Uren, V., Motta, E., de Roeck, A.: Integration of semantically anno-
tated data by the KnoFuss architecture. In: Proceedings EKAW 2008. (2008)

15. Nikolov, A., d’Aquin, M.: Identifying relevant sources for data linking using a
Semantic Web index. In: Workshop on Linked Data on the Web (LDOW 2011),
WWW 2011, Hyderabad, India (2011)

