

The Visualization of Genetic Algorithms - Related Work

Trevor Collins

The Knowledge Systems Group,
The Knowledge Media Institute,

The Open University,
Walton Hall,

Milton Keynes,
UK, MK7 6AA.

Abstract

Genetic Algorithms are robust search algorithms capable of finding multiple
solutions to complex problems. In order to ensure that the algorithm is
working correctly it is necessary to examine the steps involved in its
execution and the results produced at each stage. It is proposed that Software
Visualization may be one technique that could support this task. This review
examines a number of Software Visualization systems, discusses the key
features that may prove useful for visualizing Genetic Algorithms, and
presents some screen representations that illustrate some possible design
configurations.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

Contents List

Acknowledgements ..1

1. Introduction ...2

1.1. Genetic Algorithm Visualization ...2

1.2. What is Software Visualization? ..2

1.3. Why is there a need for Software Visualization? ..3

1.4. Review Structure..4

1.5. Overview..5

1.5.1. Development Environments ...6

1.5.2. Program Construction..6

1.5.3. Program Debugging ...6

1.5.4. Algorithm Visualization ..7

2. A Review of Software Visualization ..9

2.1. Program Development Environments..9

2.1.1. PECAN ...9

2.1.2. GARDEN..10

2.1.3 FIELD...11

2.2. Program Development..13

2.2.1. TINKER ..13

2.3. Program Debugging ..14

2.3.1. PROVIDE..14

2.3.2. Z Step ‘94 ..15

2.3.3. TPM...18

2.3.4. TRI ...23

2.3.5. VITAL ...26

2.4. Algorithm Visualization ...30

2.4.1. BALSA ..30

2.4.2. TANGO ..32

2.4.3. ZEUS ...35

2.4.4. ZEUS-3D...39

2.4.5. PAVANE ..41

2.4.6. PARADE...43

3. Conclusions..48

3.1. Summary ...48

3.1.1. Development Environments ...48

3.1.2. Program Development...49

3.1.3. Program Development...49

3.1.4. Algorithm Visualization ..50

3.2 Discussion ..52

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

3.3. Design ideas..54

3.3.1. Principled 2D, 3D and colour views...54

3.3.2. The use of sound ...55

3.3.3. A bi-directional control mechanism...56

3.3.4 An extendible view library ...57

References ..59

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 1.

Acknowledgements

This document is the result of several months of literature searching and
system investigation. I would like to thank my supervisor, John Domingue for
his help and encouragement during this time.

Some of the screen snap shots used in this review were taken from the on-line
software visualization taxonomy written by Blaine Price, Ronald Baecker and
Ian Small (http://www-cs.open.ac.uk/~doc/jvlc/JVLC-Body.html (Price,
Baecker, & Small, 1993)), thanks go to Blaine Price for his permission to use
these images.

I would also like to thank Steven Reiss for supplying the images used in the
review sections on PECAN and FIELD, and John Stasko for the image of the
DANCE animation development tool used in the TANGO algorithm
animation system.

This work was supported by a three year postgraduate studentship from the
Engineering and Physical Sciences Research Council.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 2.

1. Introduction

1.1. Genetic Algorithm Visualization

Genetic Algorithms (GAs) are robust search algorithms capable of finding
multiple solutions to complex problems. During their search for such
solutions GAs produce vast multi-dimensional data sets, from which possible
solutions emerge. In order to guarantee the quality of those solutions the user
must ensure that the algorithm’s parameters are appropriately tuned. This
requires insight into the algorithm’s execution operations and output data set.
It is proposed that this process would be best supported by the use of
Software Visualization (SV).

This report is split into three sections. Section 1 is aimed at introducing
software visualization, it explains the structure adopted in the review, and
provides an overview of each system included. The purpose in presenting an
overview of each system in section one is two fold; first of all to enable those
readers who are not directly interested in each and every system to pick and
choose detailed sections relevant to their interests, and secondly, for those
who are interested in all of the systems to support their sense of orientation
whilst examining each one.

Section two contains a detailed review of each system. Finally section three
presents a list summarising each system, discusses some of the features which
may prove useful for GA visualization, and presents some screen
representations of possible design configurations.

1.2. What is Software Visualization?

From a Psychologist’s view-point Visualization refers to the use of the “third
eye”, an inner eye, to mentally create internal views from information
received via our five physical senses. We use this internal viewing system in
order to make sense of the external world. Visualization systems therefore are
created with the specific purpose of supporting the user’s mental
visualization process.

Software Visualization has been more formally defined as: “the use of the
crafts of typography, graphic design , animation and cinematography with
modern human-computer interaction technology to facilitate both the human
understanding and effective use of computer software” (Price, et al., 1993),
page 213. Although this particular definition focuses mainly on the use of
visual support, as the technology to involve some of our other four senses is
now a practical reality, it is felt that a wider basis for supporting the mental
visualization process is becoming possible.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 3.

1.3. Why is there a need for Software Visualization?

As was noted in the previous section, the purpose of the mental visualization
process is to enable us to make sense of our external world. Mental
visualization therefore, is central to understanding, in fact, it could even be
considered as a foundational part of consciousness. In the case of
understanding computer software it is when our mental visualization process
is unable to construct an accurate representation of the dynamic behaviour of
the static code that the majority of problems arise.

The process of correcting the errors resulting from such false interpretations is
known to as “debugging”. The debugging process itself can be further
divided into two principal activities; Instrumentation and Localisation
(Lieberman & Fry, 1995).

Instrumentation is the process of finding out what the behaviour of a
particular piece of code is. Traditional approaches to this process include the
use of tracers, breakpoints and the manual insertion of print statements
(Lieberman & Fry, 1995). All of these techniques require the programmer to
have some idea of the area in which the bug i.e. error occurred. On occasions
where the programmer is unsure of the bug’s source this can lead to an
exhaustive and time-wasting search.

Localisation is the process of identifying the individual piece of code
responsible for an error. The traditional approach for supporting this activity
is an execution stepper (Lieberman & Fry, 1995). A stepper enables the
programmer to incrementally step through the program examining the
output at each stage. A fatal flaw of the traditional stepper is that it provides
no control over the level of detail shown. Typically steppers stop before the
execution of each expression and allow the programmer to decide whether or
not to examine the next expression in detail. This again reintroduces the
problem associated with traditional instrumentation tools, i.e. that the
programmer must have some idea of the source of each bug.

Although these approaches go some of the way to helping Programmers
analyse their code clearly more could be done. Software Visualization seeks to
build on these traditional approaches through the introduction of
typography, graphic design, animation, cinematography and Human
Computer Interaction technology. By using these to improve the support for
our mental visualization process SV will, in effect, improve our
understanding and reduce the occurrence of errors. In cases where errors do
occur, SV will improve the programmers ability to locate and understand the
elements at fault.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 4.

1.4. Review Structure

SV systems are often classified into one of two broad categories; Program
Visualization (PV) systems, and Algorithm Visualization (AV) systems.
Program Visualization is the visualization of a program’s code or data i.e. the
basic elements that define the program. Algorithm Visualization on the other
hand is the visualization of a program’s algorithm i.e. the program’s
fundamental operations. This distinction may be made clearer with an
example. Take a program that sorts a series of numbers into ascending order,
it could be illustrated either by using Program Visualization, or, Algorithm
Visualization.

Program Visualization could be used to illustrate the execution of the
individual program commands by highlighting each line as it is executed, the
effect on the program’s data set could then be shown by printing each new
version created. Algorithm Visualization on the other hand, could illustrate
the series of numbers using an abstract representation such as printed blocks
whose height represented the value of each number. The programs’ operation
could then be shown by moving each block into its correct position
throughout the programs execution.

In other words, PV systems are tied to the programming language and data
structures used because they rely on them for their presentation format, AV
systems however, use abstract presentation formats and therefore, are not
directly tied to the underlying programming language or the data structures
used.

Although this dichotomy covers all SV systems the area of application for
each PV system varies quite significantly. Therefore, the following review is
structured, not as a simple dichotomy of PV versus AV, but it also sub-
divides the PV systems into three groups, based on their intended area of
application. The Venn diagram shown in figure 1 illustrates the categories
chosen and the systems associated with each.

The three sub-groupings adopted for the review of Program Visualization
systems were chosen in order to reflect the three main stages of program
development, namely; Program Design, Program Construction, and Program
Debugging. As can be seen in figure 1 above some systems support all three
of these stages, in the review these are referred to as “Development
Environments”.

The application of Visualization to the Program Construction stage refers to
systems capable of supporting the Programmer in the task of writing
program code. However, this should not be confused with Visual

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 5.

Programming where the Programmer constructs programs purely through
the direct manipulation of graphical objects (icons).

Program Debugging is perhaps one of the most obvious application areas for
Software Visualization as the Programmer’s ability to identify and remove
errors is largely dependant on their accurate understanding of the program’s
operation (see Section 1.3, above).

Program
Debugging

Program
Design

Program
Construction

PECAN

GARDEN

FIELD

TINKERPROVIDE

TPM

TRI

Z Step '94

VITAL

PARADE
(POLKA)

PAVANE

BALSA

ZEUS

ZEUS-3D

TANGO

Algorithm
Visualization

Figure 1. A Venn diagram illustrating the types of SV systems discussed in this review. The
types of systems reviewed are labelled in italics and the names of the systems reviewed are
labelled in capitals (except ZStep’94).

The final section of the review is that of Algorithm Visualization as
previously noted the approach to visualizing a programs algorithm is quite
distinct from visualizing its code or data. The review of algorithm
visualization systems requires no sub-division as their area of application
does not vary so widely.

1.5. Overview

This sub-section contains a brief overview of the systems reviewed in section
two. This illustrates the structure used in the review and provides an initial
introduction to the examined systems.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 6.

1.5.1. Development Environments

PECAN - A family of programming systems that supports the optional
usage of structured templates for program commands, along
with provision for maintaining concurrent graphical and textual
views of a program.

GARDEN - An automated design environment to support conceptual

programming. This is made up of three basic components; an
object oriented framework, a multiwindow environment, and an
environment support framework.

FIELD - A programming environment aimed at providing an

integration framework for UNIX based tools with direct support
for program and data visualization. Particularly significant for
its introduction of the “selective broadcasting” integration
mechanism.

1.5.2. Program Construction

TINKER - A program-by-example system that provides instant
graphical and textual feedback. A function is created through a
series of example steps, once completed the steps are
generalised and displayed as program code.

1.5.3. Program Debugging

PROVIDE - A program evaluation and debugging environment
implemented in order to illustrate the open access debugging
approach proposed by Thomas Moher. This approach increased
the direct engagement between people and their programs by
the graphical presentation of program states at a chosen level of
granularity, which the users could then directly manipulate and
observe the results through immediate feedback.

Z Step ‘94 - This Lisp program debugging environment produces a

(textual) code and (graphical) output view of the program under
examination. It provides bi-directional control over both the
code expression execution and output execution. It also includes
the option to displays the evaluation of each program
expression as it is found.

TPM - A program visualization system that is capable of automatically

visualising any Prolog program ran through its interpreter. This

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 7.

was one of the first systems to introduce bi-directional trace
stepping. It uses a goal tree visual metaphor for both coarse
grained and fine grained views and hence provides a highly
consistent interface mechanism.

TRI - A very flexible rule-based program visualization system that

presents a coarse-grained time specific view of the rule
executions in a “rule graph”, and more fine-grained rule specific
views through “three way view frames”, “predicate windows”
and “node examination frames”. Bi-directional trace stepping
and proof tree views are adopted from the TPM system.

VITAL - This was a international research and development project

over four and a half years aimed at the provision of
methodological and software support for the development of
large, industrial, embedded Knowledge-Based System
applications. This project produced the “VITAL Workbench”
and the “Viz” visualization framework. The most notable
features of this project are the extensive provision of
visualization support (via the “Viz” framework and software
library) and the close integration of an assortment of design,
development and validation tools through a common interface
mechanism (the “VITAL Tower”).

1.5.4. Algorithm Visualization

BALSA - This was one of the first real-time algorithm visualization
systems. Its primary application is as a teaching aid for
computer science students studying computer algorithms. The
student interacts with the visualization system in a set-up and
run cycle: the algorithm, parameters and display format are first
set-up, and then run. The students then observe the operations
of the algorithm during its execution.

ZEUS - This system uses objects, strong-typing, parallelism and

supports the graphical development of views. Multi-view
editing is introduced to this system through the adoption of an
editor which enables the user to define, or edit, a view through
either text or graphical manipulation.

ZEUS-3D - This is basically ZEUS plus 3D. The systematic approach

taken with sound and colour in the ZEUS system is applied in
this system to 3D. 3D is used for: the representation of
additional information, the integration of two normally 2D
views, and the representation of time in an originally 2D view.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 8.

TANGO - The implementation of an algorithm animation framework

devised to produce smooth, colour animations. The framework
has three main components; the algorithm itself, the mapping of
the algorithm’s operators to create a control file, and the
resulting animation. The significance of this system is in the
animation component where animations are created using the
“Path Transition Paradigm”. Four abstract data types are
available within this paradigm; images, locations, paths and
transitions from which all animations are constructed.

PAVANE - This is a parallel program visualization system capable of

producing 3D colour animations. A shared dataspace is used to
maintain the visualization of concurrent processes. A
declarative approach is adopted in which program states are
mapped from the state space through a proof space, object
space, and animation space to produce the corresponding
visualization images.

PARADE (POLKA) - A parallel program animation development

environment designed to support the construction of
application specific animations by programmer’s with little or
no experience of graphics programming. POLKA is the name of
the animation component used to construct the visualizations
used. POLKA is available in either 2D, on X Window systems,
or 3D on Silicon Graphic’s GL systems.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 9.

2. A Review of Software Visualization

The following section presents a detailed account of the systems mentioned in
the above overview (section 1.5). Just like the previous section, the following
is ordered with respect to the foreseen area of application. It is hoped that this
will support the comparison of like with like and enable the reader to
maintain a sense of perspective.

2.1. Program Development Environments

2.1.1. PECAN

The PECAN “family of programming systems” was developed by Steven
Reiss at Brown University (Reiss, 1985). At the time of its development, the
two main differentiating features between this system and several of its
contemporaries were 1) its extensive use of the graphical facilities available on
personal workstations, and 2) its support for multiple concurrent views.

Some of the key features of the PECAN system include: the provision of an
undo facility whereby the user can undo and redo any action back to the
beginning of the current session, the optional use of structured templates for
support whilst writing the program code, and finally, the provision of a
framework that enables the use of a variety of (algebraic) programming
languages via the same commands.

PECAN provides support for three different types of views; program views,
semantic views and run-time views. Examples of Program Views include the
provision of a Syntax-directed Editor and Nassi-Shneiderman (structured
flow-chart) graphs. Examples of the Semantic Views provided within PECAN
include Symbol Table and Data Type views which illustrate the scope and
type definition of the current symbol being edited, an Expression view that
breaks the current expression down into an expression tree, and a Flow
Graph view that shows the flow of control through the program on a system
produced flow chart. Finally, an example of an Execution view is the Stack
view this illustrates the current state of the execution stack. A series of
sequential execution frames make up the Stack view each frame includes the
frame reference, the variables used in that frame and their associated values.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 10.

Figure 2. An example PECAN screen view. This figure shows examples of the Syntax-
directed Editor (bottom right), Flow Graph (middle), Nassi-Shneiderman flow chart (lower
left), and Execution and Data Stack views (middle left).

2.1.2. GARDEN

In the development of the GARDEN Automated Design Environment (Reiss,
1987) Reiss argued that a design environment should not constrain the
designer to the design methods implemented therein. He proposed that
designers naturally use a variety of techniques when designing their systems,
and these techniques are often modified to suit the problem better with new
strategies, or languages, being constructed to simplify the description of an
otherwise complex design. In order to support such a free-form and non-
invasive approach, Reiss developed the GARDEN design environment for
conceptual programming. This environment is comprised of three basic
components; an object oriented framework, a multiwindow environment and
an underlying environmental support database.

The object oriented framework encourages the use of both data and control
abstraction. The objects form a consistent basis for supporting multiple
languages as any language can be defined in terms of its underlying
constructs. Furthermore, as the objects can be used to represent programs
GARDEN has no bias toward either graphical or textual syntactic forms. At

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 11.

the time of publication however, the GARDEN environment provided only a
single textual Lisp-like form of representation, although this is not suitable for
all languages, the problem here is one of implementation rather than design.

Within the multiwindow environment three editors are available; the text
editor, the graphical editor and the object-based browser. Additional
windows can also be used to display interactive read-eval-print loops, user
controlled system browsers, document editors, and any additional input/
output windows. Multiple instances of these display windows can be used
simultaneously, with any necessary view updates being automatically
maintained.

Finally the environmental support is provided by an underlying object-
oriented database which is used to store all of the objects in current use,
effectively saving the entire environment. With the necessary consistency
checking and access control several programmers may share a common object
space for collaborations. Version control is also supported by enabling users
to create and restore different versions of their environment.

2.1.3 FIELD

The FIELD (Friendly Integrated Environment for Learning and Development)
programming environment was designed for both teaching and research
(Reiss, 1990). FIELD provides a framework for the integration of UNIX based
tools into a consistent programming environment. The key concept
underlying this environment is the integration mechanism called “selective
broadcasting”. At the beginning of a session each of the tools being used
sends a message to the central message server notifying it of the messages for
which they hold an interest. During use the central message server receives
incoming messages from the tools and matches them to the interesting
messages previously declared. The corresponding tools are then sent a copy
of that message.

The FIELD environment emphasises program and data visualization. Support
is provided for the automatic visualization of the user’s data structures,
including the dynamic updating of these structures whilst the program
executes. Program execution can be monitored either by directly viewing the
source code or indirectly by using a code visualization such as a call graph.
Annotations may also be added in order to provide hooks for algorithm
animations. An example screen view of the FIELD environment is given in
figure 4.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 12.

Figure 4. An example screen view of the FIELD environment illustrating: the control panel
used to select the tools (top left), the debugging tool “dbg” (top right), the annotation editor
“annotddt” (bottom left), the flow chart view “flowview” (middle right) and the execution
view “QuickDraw” (bottom right). This figure is available from the World Wide Web research
page at Brown University (see http://www.cs.brown.edu/ research/hpde/arpa-quad-
94.html).

In a recent report on software visualization (Reiss & Cruz, 1994) Reiss and
Cruz point out:

“While this {the FIELD environment} provides information, it is not
sufficient for real software understanding. The questions of interest
often cannot be characterised by one of the canned views. Also, the
amount of effort required to specify the particular aspect of the generic
view that was needed was perceived as too much.”

In an extension of the work originally done on the FIELD environment Reiss
and Cruz are now examining the use of a visual query interface. They
propose that by storing all the data produced in a virtual database, the user
could then use a visual query interface to find any data of interest quickly and
easily. Reiss and Cruz propose that querying for software understanding
should, therefore, be at a high-level of abstraction, easy to do, and should
make use of the same metaphors as the original visualization. The DOODLE

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 13.

database query language was adopted for this purpose. Within DOODLE a
visual constraint language is used to specify by example the data display.

Reiss and Cruz also proposed the adoption of 3D, reasoning that the use of an
additional spatial dimension permits a more compact presentation of data
and more flexibility for the design of new presentations. Three new tools are
being created to support this, namely; PLUM, PEACH and TWIG. PLUM is a
style manager which offers a variety of different, parametrized 3D
presentation styles that can be combined hierarchically to form a desired
view. PEACH is a hierarchical browser used as a front end for the PLUM style
manager. TWIG is the name given to the specification definition language and
its associated interpreter. TWIG was based on the GELO graphical editor
used within the GARDEN environment and is designed to be suitable for
graphical editing.

2.2. Program Development

2.2.1. TINKER

The TINKER programming environment is a Lisp-based environment in
which a programmer may create a program through demonstrating its steps
on representative examples (Lieberman, 1981).

Figure 5. A TINKER screen view depicting the stack window (top-left), the function window
(bottom-left) and the graphical execution window (bottom-right) of a block manipulation
program. This figure was taken from (Lieberman, 1993), page 58.

As indicated in the above figure TINKER uses three types of windows; a stack
window, a functions window and a graphical window. The stack window
shows the previous states of the program’s stack. The components of the
program stack can be selected as arguments for further examples. The
function window shows the generalised function code i.e. the code
generalised from the user’s example commands. The graphical window
shows a visual representation of the current example. All three views are
continuously updated throughout interaction in order to reflect the

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 14.

programmer’s actions. Hence, the user is provided with both code and
graphical confirmation of their examples.

Once an example is completed the individual steps are generalised to form a
program. It should be noted that unlike the majority of programming-by-
example systems TINKER does not infer or assume anything it is not
explicitly told by the user. Any conflicts which arise between examples, such
as conditional conflicts, are taken up immediately with the user who must
specify a predicate to distinguish between the conflicting cases.

An advantage of this incremental programming and immediate feedback
approach is that the user can freely choose to program in a “top-down” or
“bottom-up” manner. By constructing programs “bottom-up” the user may
start with the most common base case and then further refine their program
by adding more specific exceptions. The “top-down” approach supports the
construction of specific examples which can be further reduced to more
common cases.

An example of these two approaches could be taken from a definition for
birds in which the most common case is that all birds fly, and a more specific
case is that penguins and emus don’t fly. A top-down definition would start
with the specific example and work down to the more common base case,
whereas the bottom-up definition would start with the base case and work up
to the specifics. The approach adopted by the programmer will be dependent
on the level of the information known.

Further details on this system are available from the World Wide Web, see
http://lieber.www.media.mit.edu/people/lieber/Lieberary/Tinker/Tinker.
html

2.3. Program Debugging

2.3.1. PROVIDE

PROVIDE is a PROcess Visualization and Debugging Environment
introduced to demonstrate the principles behind Moher’s open access
approach to program execution and debugging (Moher, 1988). Standard
dynamic debugging capabilities are extended by ((Moher, 1988), page 849);

- the use of computer graphics, rather than text, to depict process
states;
- continuous, rather than query-driven, display of user-defined process
state representations;
- direct manipulation of graphic process state representations, rather
than a command language, for modifying data objects;

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 15.

- random, rather than sequential and unidirectional, access to all
process states arising during execution;
- interactive control over program granularity;
- state selection based on data states as well as control states, and
- automatic consistency maintenance of process state displays in the
face of modifications to programs and data.

The primary goal of the PROVIDE system is to allow users to observe and
control program execution at a suitable level of extraction. To this end
PROVIDE enables users to specify any program objects of interest, these
objects are then allocated a permanent display area during execution and are
automatically maintained. Users can also modify views after compilation, as
the use of deferred binding enables view editing to take place outside the
traditional edit-compile-execute cycle. Another significant feature of
PROVIDE is its playback facility in which users can control not only the
apparent speed, but also, the apparent direction of execution (a feature also
supported by Eisenstadt and Brayshaw’s TPM system).

In order to implement these features Moher used a “continuous execution”
technique so that whilst the program is being interpreted the state transitions
are recorded in a process history database. This database is a shared resource
between the interpreter and the interface. As the interface has access to all
state transitions the user can identify any that may be of interest. Control over
the display’s apparent speed and direction during execution is not direct
control over the program, but, over the accessing of that program’s process
history database.

When a view is modified the PROVIDE environment disposes of its future
pre-computed data from the database and starts again from the current frame.
As a result, although the term “process history database” may imply that the
program’s complete history could be viewed using any view, in practice only
the history of each view is stored. Hence, visualizations of the program using
a view not displayed at the original time of execution are not supported.

PROVIDE effectively demonstrated the principles behind Moher’s approach
to open access debugging. The major contribution made by PROVIDE is the
design of a system capable of this level of user control in a practical
environment.

2.3.2. Z Step ‘94

Z Step ‘94 is a program debugging environment developed by Henry
Lieberman and Christopher Fry at MIT’s Media Lab (Lieberman & Fry, 1995).
This environment supports a “20-20 hindsight” view of debugging, in that it
enables the Programmer to go back in execution-time and re-examine the

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 16.

execution at varying levels of detail. A complete, incrementally generated
history of a program’s execution and its output is maintained by Z Step ‘94.

Figure 6. A screen view of Z Step ‘94 in which an alpha-beta tree drawing program is being
debugged. There are five main components to the Z Step’94 environment; the bi-directional
“video-recorder” control bar (mid-left), the “cruise control” panel (top-left), the code view
(main window, centre screen), the “floating value window” (mid-right), and finally the
(graphical) execution view (bottom-right). This figure was taken from (Lieberman & Fry,
1995).

A “video recorder” metaphor is used to create the control panel of a bi-
directional stepper (figure 6). The upper section of the control panel enables a
programmer to step through the execution expression-by-expression. The
graphical stepper in the lower section enables the programmer to step
through the graphical changes in the program’s output. Lieberman and Fry
reason that as a program’s behaviour is generally considered by the
Programmer in terms of the graphical output frames, the graphical stepper is,
in effect, providing a stepper for controlling the behaviour of the program

Go to end of program

Show value of expression, without stopping

Single step

Single step backwards

Back up from value to expression

Go to beginning of program

Single step "graphically"

Single step backwards "graphically"

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 17.

Figure 7. An illustration of the bi-directional “video recorder” control panel used in Z Step ‘94
(figure taken from (Lieberman & Fry, 1995)).

A “cruise control” panel is also available with which the programmer can set
the execution speed of the program in either the forward or backward
directions (figure 8). The cruise control window enables a programmer to
click on either Backward, Pause, or, Forward buttons, with the distance from
the middle of the pause button being used to define the speed of execution in
the corresponding direction.

Backward Pause Forward

Figure 8. An illustration of the cruise control window used in Z Step ‘94 (figure taken from
(Lieberman & Fry, 1995)).

Another feature of the Z Step ‘94 environment is the “floating value
window”. A problem with previous linear steppers and trace programs was
that each expression was simply printed out as it was executed. This created
the additional task of trying to match the printed expressions to the
corresponding position in the code. As a method for supporting this matching
some debugging systems provided a “follow the bouncing ball” interface
which pointed to the current expression in the code before printing its value
in another window. This however, although effective created a “ping-pong”
effect as the programmer was forced to constantly switch their visual
attention between the two windows of interest.

Lieberman and Fry proposes the “floating value window” as a solution to
these problems. Rather than separately pointing to an expression and
displaying its value, the floating value window itself moves through the code,
pointing to the current expression being evaluated and displaying any values
it returns. The background of the floating window is colour coded; a light
green background indicates the expression is about to be evaluated, a light
blue background indicates a returned value, and a yellow background
indicates an error has occurred and the error message is displayed within the
window.

As the floating window displays any error messages beside the expression
that generated that error, the process of localisation is significantly reduced.
Rather than disrupting program execution the Z Step ‘94 environment stops
and enables the programmer to reverse over the events leading up to the
error. Once a correction has been made the program can then be executed
again. Note, this does not mean that the execution can continue where it left
off, the entire program must be executed again for any corrections to be
effective.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 18.

Four additional feature settings are discussed by Lieberman and Fry to
support the instrumentation process. A “step to mouse position” mode
enables the programmer to select an expression in the code and the stepper
will go either forward or backward to that expression’s evaluation. The
“show value under mouse” mode is a continuous mode which displays the
latest evaluations for any expression pointed at with the mouse-cursor. This
mode does not step forward to evaluate any new expressions it will only
display those values which it has already stored.

A “current form history” feature can also be used so that an expression’s
previous values can be displayed in a separate form history window when
selected by the programmer. Finally, the “values filter feature” supports the
display of a selected condition expression’s previously satisfying values. By
further selecting an individual value the stepper will step back to the
corresponding evaluation.

There is also support for correspondence between the views. As the stepper is
used to step through the expressions, the execution view is updated to reflect
the corresponding dynamic behaviour of the program. Furthermore, if the
programmer selects a graphical object in the execution view the stepper
positions the text view at the code expression responsible for that objects
creation.

The significant contribution of the Z Step ‘94 environment is its integration of
reversibility, code animation, and correspondence between code expressions,
values and graphical output. Further details on this system may be found on
the World Wide Web, see http://lieber.www.media.mit.edu/people/lieber/
Lieberary/ZStep/ZStep.html

2.3.3. TPM

The Transparent Prolog Machine (TPM) is a visualization system capable of
visualising any Prolog program (Eisenstadt & Brayshaw, 1987). TPM is a
continuation of some of the work done on the Prolog Tracing Package (PTP)
by Marc Eisenstadt in the early 1980’s (Eisenstadt, 1984).

PTP uses a technique developed by Eisenstadt known as “retrospective
zooming” (Eisenstadt, 1985). By storing all of a program’s trace details
internally this technique enables the user to decide upon the current level of
detail exposed, and therefore customise the trace to their debugging task. This
technique is also supported in TPM by the provision of two alternative
viewing structures known as coarse-grained and fine-grained views.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 19.

A common visual metaphor is used for both of these views, namely; the
Prolog program’s “goal tree”. Each node on a goal tree represents a command
in the Prolog program and each layer in the goal tree represents a layer in the
program . In a coarse-grained view a goal’s type is indicated by the node’s
shape, its status is indicated by the fill colour and node-outline (see table 1).

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 20.

Node Feature Goal Attribute

Shape Type

 square user-defined goal
 circle system primitive
 triangle compressed tree section

Fill Colour & Outline Status

 white (or green) successful goal
 white (or green) with a currently pending
 thick node outline goal
 black (or red) failed goal
 grey scale (or pink) an initially successful goal which
 failed on backtracking.

Table 1. A description of the visual components of a long-grained view goal tree.

A commonly cited fault of tree-based visualizations is their ability to
effectively illustrate large programs. In the case of TPM this problem is
avoided by the provision of a compression facility with which the user may
compress irrelevant sections of the goal tree into single nodes. These
compressed sections are then indicated by a triangular node in the goal tree
(table 1). Compounded with the fact that TPM supports multiple views and
view scrolling, this makes the problems associated with displaying huge goal
trees virtually insignificant. An example of a coarse-grained view is given in
figure 9.

Figure 9. An example of a coarse-grained view used by TPM.

The fine-grained view of the program’s goal tree provides a more detailed
view of the goals. Each user-defined goal in the goal tree is replaced by a
“Procedural Status Box” (see figure 10). This box illustrates the current status
of each goal and its respective clauses. For both goals and clauses a tick is
used to indicate success and a cross to indicate failure. In the case of system
primitives a circle is used rather than a procedural status box.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 21.

2

goal status

clause counter

clause branch
clause status box

Figure 10. A Procedural Status Box.

Each status box provides additional detail about the individual goals and
their respective sub-goals (commonly referred to as “clauses”). A printed
representation of each goal is presented along side each status box, this
includes the current variable instantiations (enclosed in lozenges) and the
passing of variables between goals (illustrated using arrows). These fine-
grained views are called AORTA diagrams, which stands for And/OR Trees-
Augmented. An example Prolog program and it’s corresponding AORTA
diagram is given in figure 11.

older(X, Y) :-
 age(X, AgeOfX),
 age(Y, AgeOfY),
 AgeOfX > AgeOfY.

age(john, 27).
age(tom, 18).
age(sue, 24).

?- older(john, sue).
yes

a

age(X , AgeOfX) age(Y , AgeOfY)

1

1

older(john, sue)

AgeOfX > AgeOfY11

older(X , Y)

3

1 1
sue

1 1

age(sue , 24)

1
27 24

1
john

age(john , 27)

b

c d e

f
g

h

i

Figure 11. An example Prolog program and its respective AORTA diagram, as used for
displaying fine-grained views within TPM. The small letters in italics indicate the order in
which the status symbols appeared. System primitives are displayed as circular nodes.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 22.

As previously noted a Prolog program’s trace details are stored internally by
TPM this provides the data source for a replay panel. The replay panel within
TPM can be used in order to control the current position within the trace
history. In addition to the replay controls their are four additional command
icons, these empower the user to; set pause ports (also known as breakpoints)
for a node, refocus the display causing a selected node to be the top node in a
new goal tree view, display the location of a goal in the source code, or,
zoom-in to a fine-grained view of a selected node. The icons used in the
replay panel are illustrated in figure 12.

set pause ports refocus find procedure zoom in on node

 step play forward to end step back to start

Figure 12. The command and control icons available within the TPM replay panel.

The two most important features of TPM are its ability to support
synchronised coarse-grained and fine-grained views, retrospective zooming,
and user directed tracing. A screen shot is given in figure 13 in order to
provide an impression of a typical TPM scenario.

TPM is now a commercially available system and has been adopted by the
Open University as an aid for teaching Prolog on their DM862 - Intensive
Prolog course (details are available via the World Wide Web at
http://kmi.open.ac.uk/courses/DM862.html). Mike Brayshaw has recently
been working on a version of TPM suitable for a parallel version of Prolog
known as Parlog. This system uses the same visual metaphors and replay
panel as TPM but is extended to visualise the concurrent processes involved
in parallel programming (see (Brayshaw, 1990)).

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 23.

Figure 13. A screen shot taken from TPM version 1.11.

2.3.4. TRI

TRI stands for the Transparent Rule Interpreter (Domingue & Eisenstadt,
1989) which was developed by John Domingue at The Open University as
part of the KEATS project (Knowledge Engineer’s Assistant) (Motta, Rajan, &
Eisenstadt, 1989). TRI is a maintenance tool designed for use on rule based
programs written in OPS 5.

In order to debug a rule based program the Programmer must understand
not only the specific components of the program but also how those
components are structured to form a Knowledge Base. Therefore, a course-
grained view is required in order to get an overall idea of the program’s
structure, as well as a fine-grained view so that the Programmer can
understand the specific program details (such as rule unification, instantiation
and the working memory state).

TRI supports the dual requirements of the debugging process by using a “rule
graph” for coarse-grained viewing and “view frames” for fine-grained
viewing. A rule graph provides an explicit representation of a program’s
execution cycles (shown along the x-axis) and the associated rule actions
taken (shown along the y-axis, see figure 14).

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 24.

 1 2 3 4 5

ruleA

ruleB

ruleC

Figure 14. An example rule graph illustrating the execution of a set of three rules over five
execution cycles. A plus sign indicates a rule fired. A triangle (not included in this graph)
indicates that a rule fired and backward chaining occurred. A box indicates that a rule was
considered but did not fire.

The view frames provide more detailed views of the program’s history. Three
different types of view frames have been developed; Three Way View
Frames, Predicate Windows and Node Examination Frames. The view frames
used are under the direct control of the user who can create, move and delete
view frames at will. A high level of selectivity within these frames provides
an easy and consistent method of interaction for viewing and manipulating
rule components.

Three Way View Frames provide an opportunity for the user to view either
the rules, predicates or working memory components of their program. These
can be viewed either individually or up to all three views may be displayed at
the same time. TRI also offers support for carrying out operations on any item
within a frame view such as: describing a working memory element;
describing a predicate, or; describing, viewing, or, editing a rule.

Predicate Windows can be used to display the working memory elements
associated with a selected predicate or set of predicates. A cycle number is
displayed beside each element indicating the cycle during which that element
was deposited in working memory.

Node Examination Frames provide fine-grained views of the nodes in the rule
graph and are intended to highlight why a rule didn’t fire during a particular
cycle. A rule graph node is selected using the mouse in order to create a Node
Examination Frame containing the corresponding rule’s definition and
instantiations during the corresponding execution cycle (see figure 15).

The rule instantiations in a Node Examination Frame can also be selected
using the mouse in order that they may be further examined. Rule
instantiations in which backward chaining occurred are visualised using
proof trees, these trees are based on the coarse-grained views used in TPM
(see section 2.3.3). An example of a close-up of a backward-chaining proof
tree is shown in figure 16.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 25.

Figure 15. An example of a node examination frame from a route finding rulebase, the upper
section displays the rule’s definition and the lower section its instantiations. The most recent
instantiation of a rule is highlighted using italics. Instantiations shown in bold indicate that
when the rule fired backward chaining occurred. This view would have been produced by
selecting the rule graph node corresponding to the add-city-to-route rule at cycle number 25.

Figure 16. An example of a backward-chaining proof tree for an adjcities rule instantiation.

The execution control mechanism used within TRI is also taken from
Eisenstadt and Brayshaw’s TPM system. Using the replay panel a user can
either; step forwards or backwards through the execution cycles, or, replay
the program’s history. The replay panel used in TRI is shown in figure 17.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 26.

 to start step back forward play stop to end

Figure 17. A representation of the replay panel used within TRI. Each control button’s action
is explained in the added text.

All of the views within TRI are synchronised and provide the user with both
coarse-grained and fine-grained simultaneous views of their rule based
programs. A screen shot containing examples of all of the views discussed is
shown in figure 18.

Figure 18. A screen shot of TRI, taken from (Domingue & Eisenstadt, 1989).

2.3.5. VITAL

The VITAL project was a four and a half year research and development
project completed in April 1995. This was an ESPRIT II project that involved
nine organisations in five different countries. Their aim was to provide both
methodological and software support for the development of large,
industrial, embedded Knowledge-Based System applications (Domingue,
Motta, & Watt, 1993).

Software visualization was seen as an opportunity to enhance the users’
control of the individual tools within the VITAL Workbench, in order to
support this a separate visualization framework and software library, called
Viz, was created (Domingue, Price, & Eisenstadt, 1992).

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 27.

Viz enables the user (i.e. KBS developer) to define and construct
visualizations of their systems using a very high level programming
language. A program’s execution data is stored in a history database which is
used as the basis for creating different views of that program’s execution.
These views are then made available to the user, who can pick and choose
which views they wish to see.

To orchestrate this Viz uses a story-telling metaphor in which the program’s
elements (i.e. functions, data structures, lines of code, etc.) can be referred to
as “players”. The players are identified, either manually by the user
annotating the code selecting elements of interest, or, automatically by the
program compiler. The program’s execution is then stored in the history
database as a series of “history events” (i.e. events that happen to, or are
caused by, the players). Hence each player’s name and state details are stored
every time there is an event involving that player. An architecture diagram
showing the different sub-components of Viz is given in figure 19.

Figure 19. The architecture of Viz, taken from (Domingue, Eisenstadt, & Price, 1994), page 9.

There are four main components to Viz, the; “History”, “Views”, “Mappings”
and “Navigators” components. The History component holds a record of all
key events that occur over the duration of the program’s execution. The
Views component provides the styles in which a particular set of players,
states, or, events can be presented. The Mappings are the encodings used to
present the players’ state changes, either graphically, or, aurally within each
view. Finally, the Navigators are the tools or techniques used to interact with
the user. They allow the user to traverse a view, move between multiple
views, change scale, compress or expand objects, and move forward or
backward in time through the programs execution.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 28.

Figure 20. A screen snapshot of an example Viz visualization containing a TRI rule graph. A
detailed description of the TRI rule graph may be found in the previous section (2.3.4). This
view was taken from (Domingue, et al., 1993), page 14.

An example Viz visualization may help illustrate how these components are
used in practice. The previous section (2.3.4) examined the development of
the Transparent Rule Interpreter, a KBS maintenance and debugging tool.
Figure 20 shows a screen view of a TRI rule graph created using Viz. A rule
graph is a visualization of the execution of a set of rules over a series of
execution cycles. The players, their possible states, program events, mappings
and view details are summarised in table 2.

 Viz Definition
Players rule, rule instantiation; the rule player is composed of rule instantiation

players
States failed to match working memory; applies only to rule players

matched against working memory; applies only to rule players
fired; applies to rule and rule instantiation players
fired and invoked the backward chainer; applies to rule and rule
instantiation players

Events matching against working memory;
firing;
invoking the backward chainer

Mappings failed to match working memory ->

matched against working memory ->
fired ->

invoking the backward chainer ->
Views (in
decreasing
order of
granularity)

table: current state; in a table based view display the rules current state
text: rule’s instantiation states; in a text based view show the rules
instantiations states

Table 2. A summary of the Viz definition used to create the TRI rule graph shown in figure 20
above. This table was also taken from (Domingue, et al., 1993), page 14.

The VITAL project was unique in that it represented an international effort to
formulate a design, development and validation methodology for KBS
applications. The Viz visualization framework and software library is capable
of producing not only program visualizations (i.e. program data and code
visualizations) but also algorithm visualizations.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 29.

Figure 21. An illustration of the software visualization support provided by VITAL. This figure was
taken from (Domingue, 1995), page 8.

The extent to which the Viz framework and library is used within the VITAL
project is illustrated in figure 21. The Problem Solving Architecture and Code
Visualizations are examples of program visualizations, they closely illustrate
the actions of the code and states of the data being manipulated by the KBS.
The Domain and Expert Scripted Visualizations are similar to algorithm
visualizations where abstract representations are used to illustrate the KBS’s
operations.

For those interested in finding out more about the Viz framework a world
wide web page maintained by John Domingue is available at The Open
University, see http://kmi.open.ac.uk/~john/viz/viz.html. Further details
on the VITAL Workbench are also available from The Open University world
wide web server, see http://kmi.open.ac.uk/~john/vital/vital.html .

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 30.

2.4. Algorithm Visualization

As noted previously in section 4 algorithm visualizations monitor the
fundamental operations of an algorithm. These operations cannot be deduced
for an arbitrary algorithm automatically, but must be identified by someone
who has knowledge of that particular algorithm. The following sub-sections
present six algorithm visualization systems and discusses their respective
merits. The last two of these six systems are specifically aimed at providing
support for parallel programming. This is inherently more complex than
animating a serial program because of the non-deterministic nature of parallel
programs.

2.4.1. BALSA

The BALSA environment (Brown ALgorithm Simulator and Animator)
supports a high-level user interface that allows users to interact with the
dynamically changing graphical representations of their programs (Brown &
Sedgewick, 1985). The use of colour and sound is introduced to algorithm
animation within this environment, although its use is not extensive an
acknowledgement is deserved. BALSA interaction is based around four
different user types; the Algorithm Designer, the Animator, the Scriptwriter
and finally, the End User.

The Algorithm Designer provides the programs to be animated, he or she
identifies any “interesting events” which need to be visualised, and contribute
to the design of the graphical representations used. The Animator’s task is
then to implement the views that make up the graphical presentations. The
Scriptwriter is the person who constructs the scripts for the animation i.e.
what information is shown to the user and when. Finally the End User makes
use of these scripts and views the dynamic graphical representations of the
algorithms.

The interaction style for an End User is referred to as a “set-up and run” cycle
(Brown, 1988). In the set-up phase the End User arranges the display layout,
the algorithms they wish to view, and the parameters they want to associate
with each algorithm, including its input generator and output views (figure
22). Then once set-up the End User runs the algorithm and observes the
results (figure 23).

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 31.

Figure 22. A pair of screen shots depicting the set-up phase of a BALSA session for a number
sorting algorithm. The first screen view illustrates the display layout selection dialogue in the
centre of the screen. The second screen view illustrates the parameter selection dialogue. In
this particular example the user may select the initial organisation of the numbers (currently
set to a random ordering), the number of numbers to be sorted and, the random number
generator’s initial seed value.

Figure 23. A screen shot depicting the run phase of a BALSA session for a number sorting
algorithm. The numbers are represented by vertical columns, the size of each column
represents the size of its associated number. As the numbers are sorted by the algorithm the
columns move into place.

The control method for program execution is taken from Mac Pascal
terminology. The End User can control the forward execution of a program
by selecting one of five control commands shown in table 3.

Command Action

Go stop at the next stoppoint
GoGo pause at the next stoppoint
Step stop at the next steppoint
StepStep pause at the next steppoint
Reset reset the program

Table 3. The control commands available within the BALSA algorithm animation system,
taken from (Brown, 1987), page 65. The term stop point is used to refer to any breakpoints

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 32.

inserted in the program and the term steppoint is used to indicate the intermediate step
positions in the code i.e. just after every command.

The End User can also edit the viewing position for each view. By selecting an
individual view the user will display that view’s control bars with which they
can manipulate their viewing position. The End User can either pan vertically
(using the right hand scroll bar), pan horizontally (using the scroll bar across
the bottom of the view) or magnify their viewing position (using the left hand
scroll bar).

For anyone interested in finding out more about BALSA there is a demo
version for the Macintosh available via anonymous-ftp from
ftp.dec.com/pub/DEC/macbalsa-demo.sit.hqx.Z and a source code version
available from ftp.dec.com/pub/DEC/macbalsa-source.sit.hqx.Z. The
MacBALSA user guide can also be found in ftp.dec.com/pub/DEC/ under
the file name macbalsa-userguide.ps.Z .

2.4.2. TANGO

The TANGO algorithm animation system (Transition based ANimation
GeneratiOn) was the resulting implementation of a framework devised by
John Stasko for describing, specifying, analysing and formalising the elements
involved in animating algorithms (Stasko, 1989). The framework contains
three primary components; the Algorithm, Mapping and Animation
Components (figure 24).

Algorithm Mapping Animation

x = 10;
if (y == 12)
 z = 2.3;
for (i=1; 1<=10; ++i)
 a[1] = 0.0;

Figure 24. John Stasko’s algorithm animation framework as used in TANGO (figure taken
from (Stasko, 1989), page 34).

The Algorithm Component adopts an event driven approach in which any
events important to the algorithm’s semantics are identified by the Algorithm
Designer. These events are referred to as “algorithm operators” and are used
to model procedure calls mapping the algorithm to the animation, these are

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 33.

then used to create the animation control file which constitutes the Mapping
Component of the framework.

The Animation Component contains the graphical objects that will change
location, size and colour throughout the frames of an animation and the
operations that control the animation. This approach to generating
animations is referred to as the “Path Transition Paradigm” (Stasko, 1990).
Four abstract data types are used within the Path Transition Paradigm;
images, locations, transitions and paths.

Images are either Primary Images such as lines, rectangles, circles and text, or
Composite Images which are collections of primary images with specified
geometric relationships. Locations are simply positions within the animation
co-ordinate system, identified by an (x,y) co-ordinate pair. The Path is an
ordered sequence of (x,y) co-ordinate pairs where each pair designates a
relative offset from the previous position, and a relative time component used
to control the smoothness of the animation. Finally the Transition component
provides the animation with actions to modify the attributes of the image.
Three action types are available; move, visibility and fill, these can also be
used to form synchronous group transitions. A screen example of a TANGO
animation is given in figure 25.

Figure 25. A TANGO animation of a first-fit binpacking algorithm. The elements are inserted
into the rectangle and tried against each column position until a large enough free-space is
found to house them. The control bar shown at the bottom of the figure allows the user to pan
around the view, zoom in and out, switch the debugger on/off, alter the refresh rate, and
close the view.

Within TANGO the Algorithm Designer can identify the “algorithm
operators” and generate the corresponding animation control file using either

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 34.

a standard text editor or the Annotation Editor available within Steven Reiss’s
FIELD programming environment (Stasko, 1989). The advantage of using the
Annotation Editor being that the control file can be edited dynamically
without having to recompile.

An additional tool available within the TANGO system is DANCE
(Demonstration ANimation CrEation), a demonstrational tool for defining the
actions to occur in the animation scenes. This promotes ease-of-design and
rapid protoyping, hence increasing design experimentation. The graphical
editor allows designers to create and manipulate instances of the four data
types available within the Path Transition Paradigm to build up sections of
the animation referred to as “scenes”. Once created a scene can then be
automatically converted into animation code. An example screen shot is given
in figure 26, showing a typical DANCE scenario.

Figure 26. An example of the DANCE algorithm demonstration environment being used to
create a new animation scene.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 35.

2.4.3. ZEUS

Marc Brown’s second algorithm animation system, ZEUS, was designed to
provide support for both algorithm animation and multi-view editing. The
use of annotations to indicate “interesting events” in an algorithm is still
used, however, added features include the use of objects, strong-typing,
parallelism and the graphical development of views (Brown, 1991). The use of
objects encourages the reuse of code and facilitates the construction of
composite views. The introduction of a graphical editor aids the construction
of new view components and the adoption of strong-typing provides an
opportunity for generating automatic visualizations. A screen shot taken from
a ZEUS binpacking animation is given in figure 27.

Figure 27. A screen shot taken from a ZEUS binpacking algorithm animation.

Initially the user is presented with a control panel through which they may
configure the system and select the appropriate interpreter settings for their
task (see top right-hand quarter of figure 27). The configuration facilities
allow the user to select which algorithm to run, which views to use, and the
data to give the selected algorithm. The interpreter settings allow the starting,

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 36.

stopping and single stepping of an algorithm, and provide some control over
the algorithm’s speed of execution. The configuration facilities also permit the
user to write a snapshot of the state of the system to a file and restore the
system from a previously stored file.

Scripts were not included in the ZEUS system as, unlike BALSA, it was never
intended for use as an educational aid, but, as a software engineering tool.
Some utility views are generated automatically though from the list of
“interesting events”. For example a “Transcript View” displays each event as
a symbolic-expression as it is generated, the control panel also displays a view
of the events as a set of selectable buttons with the appropriate widgets for
specifying each parameter. These utility views enable the design and
debugging of new views even without the underlying algorithms.

Multi-view editing is supported by the inclusion of the “FormsEdit” editing
tool. FormsEdit is a tool developed as part of the FormsVBT User Interface
Development Environment (Avrahami, Brooks, & Brown, 1989). FormsVBT
was developed within DEC to support a two-view approach to constructing
user interfaces from an extensive library of interactor objects. An Interface
Designer using FormsVBT can either create an interface by direct
programming using the FormsVBT language, or, interactively by using the
FormsVBT editor; “FormsEdit” (as is the case with ZEUS).

Forms Edit provides three simultaneous views for the interface designer; a
Text View, a Graphical View and a Results View. The Text View incorporates
a conventional text editor with which the designer can edit the FormsVBT
syntax code, this takes the form of symbolic expressions such as;

(Border (PenSize 4) (PenPat “Grey”)
 (Border (PenSize 8) (PenPat “White”)
 (VBox (Width 200)
 (HBox Fill “*General Options*” Fill Fill)
 (HBox “Mail Check: “ Fill (Numeric %mailInterval))
 (HBox “News Check: “ Fill (Numeric %newsInterval)))))

Figure 28. An example of FormsVBT syntax which produces a *General Options* dialogue
box.

The Graphical View not only displays a graphical representation of the
interface but also supports graphical editing (see figure 31). Both the text and
graphical editors use a shared dataspace for storing the interface design. That
dataspace takes the form of a parse tree. Each node in the parse tree holds an
element of FormsVBT syntax, the tree is organised in order to reflect the
hierarchical structure of the code. Figure 29 illustrates a section of the parse
tree representation for the code given in figure 28.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 37.

Border

PenSize

4

PenPat

"Grey"

Border

PenSize

8

PenPat

"White"

VBox

Width HBox HBoxHBox

Figure 29. The parse tree representation of the example program given in figure s, only the
first four layers of the tree are illustrated here.

The third and final view within FormsEdit is the Results View which
produces a fully interactive interface model (see figure 31). Any editing
carried out within either of the editors is relayed back to the parse tree and
once the tree has been updated the changes are then sent to update all of the
views. An architecture diagram showing the structure of the FormsVBT
system is given in figure 30.

Result
View

Graphics
View

Parse
Tree

External
Editor

Text
View
Module

new text

update

edit
update

update
edit

update

Figure 30. The structure of FormsEdit. The shared parse tree data-space has two-way
communication links with the two editing views and a single one-way updating link with the
results view. Any external text editor can also be used to edit the Text View Module.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 38.

Figure 31. An example screen shot taken from Zeus which illustrates the use of multi-view
editing with the FormsEdit editor.

Although Marc Brown’s work on the BALSA system did introduce the use of
sound and colour to algorithm animation, it is the ZEUS system which further
explores the use of these two additional dimensions (Brown & Hershberger,
1992). Brown and Hershberger refer to the use of sound in visualization as
“auralization”. Sound has been used in a series of sorting algorithm ZEUS
animations in order to; reinforce the visuals, convey patterns in the data,
replace (some) visuals and for the signalling of exceptional conditions. These
animations are based on a musical score metaphor in which the sorting
operations are represented by notes and each pass through the algorithm by a
bar line. Figure 32 shows one example in which the musical score is presented
visually as well as aurally.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 39.

SetValue

SetValue

SetValue

Figure 32 The visual component from a ZEUS “auralization” of an insertion sort algorithm
running on a 20 element list. Each bar line indicates the completion of one pass through the
array (figure taken from (Brown & Hershberger, 1992), page 60).

The ZEUS system also extends the use of colour from illustrating the state of
data structures and highlighting points of interest to emphasising patterns
within the data, illustrating an algorithms history, and the tying of views
together. The extension of colour usage within this system is based on the
principles of graphic design although the design issues involved are beyond
the scope of this review it is their application which is the foundation for
effective colour usage (see (Tufte, 1990) or (Bertin, 1983)).

2.4.4. ZEUS-3D

In as extension to the ZEUS system Brown and Najork (Brown & Najork,
1993) examined the use of three dimensional visualization in order to;
represent additional information geometrically, integrate two normally two-
dimensional views, and, for the representation of time within what was
originally a two dimensional view.

The addition of a high level object oriented graphics library on top of the 3D
graphics extension to X Windows provided the basis for extending ZEUS into
three spatial dimensions. The resulting system, ZEUS-3D, provides a platform
for presenting 3D perspective visualizations along with support for the
rotation of a selected view about any of the three axes (x, y or, z).

Two examples of ZEUS-3D animations are illustrated below, figure 33 shows
three tree-based views of a heapsort visualization and figure 34 shows three
bar-chart based views of an insertion sort visualization. The three views of
each system are intended to communicate the use of the 3D viewing
perspective.

Figure 33 is an example of the use of the third spatial dimension to integrate
two normally two-dimensional views; the tree-based view shown in the first

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 40.

view, and the bar-chart view shown in the central view. A tree-based view
places the numbers to be sorted on the tree nodes in the same order as their
position in the heap then, as the heap becomes sorted, the larger numbers
(indicated as brighter nodes) work their way toward the top of the tree. The
second way of representing this type of sort algorithm is to use a colour bar-
chart, in this case the set of numbers are illustrated as a set of horizontal bars.
Each bar’s position is used to indicate the respective number’s position in the
set, the length and colour of each bar is used to indicate the number’s
magnitude, as the numbers are then sorted the bars are rearranged. In order
to integrate these two views Brown and Najork used the z-dimension to
indicate the magnitude of each number in the tree-view illustrated in the x-y
dimensions.

Figure 33. A series of images taken from a ZEUS-3D animation of a heapsort algorithm. A tree
representation is used to illustrate the heapsort algorithm with each node’s colour and size
(i.e. length in the Z dimension) indicating the magnitude of each element in an array.

Figure 34 on the other hand uses the third spatial dimension for the
representation of time. The view used in this example is based on a coloured
bar chart that indicates each number as a bar, with the number’s magnitude
being illustrated using both the bar height and colour. As the numbers are
sorted the bars are rearranged to form a wedge shaped spectrum. The third
spatial dimension (z) is used here to represent time. By reducing the bar chart
to a flat strip of what are referred to as paint-chips Brown and Najork place
each of the previous passes through the algorithm side by side along the z-
axis. Hence it is possible to trace a number’s movements throughout the
execution of the algorithm by watching how that number’s coloured paint-
chip changes position as it is plotted along the z-axis.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 41.

Figure 34. A series of images taken from a ZEUS-3D animation of an insertion sort. This time
the elements are represented by adjacent sticks whose colour and size (i.e. height in the Y
dimension) are again used to indicate the element’s values, however, in this view the Z
dimension is used to indicate the algorithms history i.e. previous element positions. In order
to provide a clear view of the current array all previous versions are flattened and shown as
“paint chips”.

These and other examples of the animation work done at DEC can be found
on the World Wide Web at http://www.research.digital.com/SRC/zeus/
home.html.

2.4.5. PAVANE

The PAVANE visualization system was developed by Gruia-Catalin Roman,
Kenneth C. Cox, Donald Wilcox and Jerome Y. Plun at Washington
University, St. Louis (Roman, Cox, Wilcox, & Plun, 1992). The PAVANE
system was designed in order to help users to understand programs
consisting of large numbers of concurrent processes. Roman, Cox et al. argue
that the most common approach to visualization, that of using program calls
to invoke visualization mechanisms each time changes occur, is unsuitable for
concurrent processes. They reason that the parallel nature of the concurrent
processes can not be accurately represented in this sequential fashion.

In order to appropriately visualise concurrent processes they propose a
declarative approach to visualization. Rather than seeing visualization
mechanisms as being called by a control structure each time a change occurs
they propose that visualization should be considered as a mapping between
computational states and graphical object states rendered by a display device.
For this purpose Roman et al. propose the use of formal declarative
mappings.

In their system a shared dataspace is used to store all the program state
values as content addressable cells. This dataspace is partitioned into three
subsets: the tuple-space is a finite set of data tuples representing passive data,
the transaction-space is a set of finite transactions representing the program’s
actions, and finally the synchrony relation is a mechanism for specifying that
selected actions are to be executed either synchronously or asynchronously.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 42.

Visualizations are specified by defining a mapping from a program state to an
image state. Three types of mappings are supported:

Simple Mapping - a functions which given an input space produces an
output space.

History-Sensitive Mapping - a function which given a primary input
space consults the previous version of its output space and produces
an output space, enabling the incorporation of historical data.

Differential Mapping - a function which given a primary input space
consults the previous input space and produces an output space,
enabling the detection of any changes.

The mapping between a program state and its corresponding image state is
divided into four sub-mappings; a proof mapping, an object mapping, an
animation mapping and a frame generation mapping (see figure 35). The
proof mapping is a history-sensitive mapping which removes any irrelevant
details from the program states, the result is then held in the proof space.
Object mappings are also history-sensitive, they map the proof space states into
the object space, this is a 3D world of geometric objects. The animation
mapping is a differential mapping; it detects visual events, i.e. changes in the
object space, and translates them into sequences of image changes in the
animation space. The final component is the frame generation mapping, this
is a simple mapping which interprets the image changes in the animation
space and produces a corresponding set of animation frames. The number of
frames produced is constrained by the time available between image
changes.

State space Proof space Object space Animation
space Image

User
interactions

Proof
mapping

Object
mapping

Animation
mapping

Frame
generation

Previous
instance

Previous
instance

Figure 35. Visualization mapping decomposition in the PAVANE system. This diagram is
taken from (Roman, et al., 1992), page 169.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 43.

The resulting frame animation system produces concurrent 3D colour
animations of an underlying parallel program. An example visualization of a
shortest-path algorithm is shown in figure 36. A better impression of this
system may be gained by examining its World Wide Web home page at
http://swarm.cs.wustl.edu/pavane.html and running a demo.

Figure 36. A three-dimensional animation of a shortest-path algorithm showing computed
distances and paths from a particular node (marked with circles). The algorithm is operating
on the depicted planar graph. Currently-known paths and distances are shown by the lines
and spheres above the graph. Colours represent the status of a node in the computation,
either scanned (green/light grey) or unscanned (red/dark grey). This diagram was taken
from ((Price, et al., 1993), page 233).

2.4.6. PARADE

PARADE is the PARallel program Animation Development Environment,
currently under development by John Stasko and his colleagues at the
Georgia Institute of Technology (Stasko, 1995). The focus of this work is to use
“application-specific” visualization to assist the debugging and correctness
checking of parallel programs. Application-specific program views are
defined as views that illustrate the program’s semantics, its fundamental
methodologies and the inherent application domain (Stasko, 1995).

PARADE is made up of three components (figure 37). The first component,
the “Parallel Program” component, extracts the necessary program
information on which to base the views. The second component, referred to as
the “Animation Choreographer”, is responsible for the gathering of the
program information and its subsequent organisation into a preferred

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 44.

structure identified by the user (via the Visualization Paradigm). And finally,
the third component is the “Visualization Paradigm”. This presents the
choreographed program details in a smooth animated form and passes the
user’s actions back to the Animation Choreographer.

Parallel
Program

or all ()
{
 x = 13;
}

fct2();

Animation
Choreographer

Visualisation
Paradigm - "POLKA"

Event Records Scene Calls

Interactions

Figure 37. An overview of PARADE highlighting its three major components; the parallel
program component extracts the information required for producing the visualizations, the
Animation Choreographer gathers the program information from the Parallel Program
component and organises it into a preferred format, and finally, the Visualization Paradigm
takes the choreographed program details and presents them in an apparently continuous
smooth animation to the user. Any user interaction is passed to the Animation
Choreographer by the Visualization Paradigm where it is acted upon. This figure is taken
from (Stasko & Kraemer, 1992), page 4.

As previously noted the first component extracts the necessary program
information to build the visualizations (labelled in the above figure as the
Parallel Program component). In order to generate the program information
for these visualizations, the PARADE user can utilise any one of three
different software instrumentation techniques, namely; via hand annotation
of the program code, by overriding the standard communication library, or,
through the modification of the resident parallel communication library.

Although annotating the source code with output statements is time
consuming and error-prone this is the most general approach of the three, in
that the user has a completely free rein over what is shown and the amount of
detail presented. The overriding of the standard communication library in
PARADE is done by the replacement of the C library called “pthreads”, these
include the basic process control and communication calls, with “gthreads”.
The gthread library contains a set of simple macros that firstly writes a trace
event of each process control or communication call to a trace file before
carrying out the associated pthread call. Although this is less general in that it
can only produce process control and communication calls it is a lot less time
consuming and a lot less Programmer intensive.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 45.

The final method for extracting the necessary program information is to
actually modify the resident parallel communication library. “Conch” is an
experimental heterogeneous network computing system that has been used
for this purpose. It contains all the communication primitives used by system
with modifications to activate and deactivate the trace facility. Although the
replacement of the computer systems parallel communication library may
seem rather extreme it results in an almost seamless program-data extraction
technique. Once the “Conch” system is in place the user is no longer required
to perform any programming tasks the visualization data is automatically
recorded during execution. All of the above information extraction techniques
time stamp each trace element. This is to ensure that each element will be
presented in the program animation at its relevant time position.

The second component of PARADE is the “Animation Choreographer”. This
takes the program information in the trace file and maps it to any associated
animations. The Animation Choreographer uses the time stamped data of
each element to present a directed acyclic graph, the graph’s nodes represent
the individual program events indicated by the trace elements.

An “Ordering” menu is used to select the temporal ordering applied to the
animation. Currently four options are available the graph can be ordered by:
the time stamped data (“Timestamp”), serially by the causal order (“Serial”),
as the events occur in global time but with any problems in logical or causal
ordering being resolved (“Minimal distortion”), or, as the events would occur
to generate maximum concurrency under their causal ordering (“Maximum
concurrency”). The Animation Choreographer then allows the user to
manipulate the graph until an acceptable ordering is found. A “run” option is
available to start the animation using the chosen temporal ordering.

POLKA (Parallel Object-orientated Low Key Animation) is the name given to
the third and final component of PARADE. This is the Visualization Paradigm
developed specifically for PARADE (Stasko & Kraemer, 1992). POLKA is an
object-orientated system for the creation of visualizations and animations
which includes both high-level graphical-object, and motion primitives.
POLKA is implemented in C++ and is available with either 2D graphical
support (on the X Windows system) or 3D graphical support (on top of
Silicon Graphics’ GL system).

The POLKA animation methodology is a combination of principles from the
Path-Transition Paradigm, (previously developed by Stasko for algorithm
animation, see section 2.4.2), and more traditional production 3D animation
systems. Figure 38 illustrates the hierarchy of a POLKA animation. An
animation is made up of a series of Views with each view being made up of
Locations, Actions and AnimObjects.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 46.

Animator

View View View.....

Location Action AnimObject

.....

Figure 38. A hierarchy diagram illustrating the structure of a POLKA animation. The
Animator module controls the smooth animation of all the Views by ensuring that each
animation action is allocated a time-frame. This figure was taken from (Stasko & Kraemer,
1992), page 5.

An AnimObject is the base class for all graphical objects (either 2D or 3D),
objects are created by the “Originate” method and deleted by the “Delete”
method. Locations in POLKA can be used to reference and remember
important positions for later use. They are real-valued (x, y) markers in the
View co-ordinate system. Finally the Action class supports the simple
movements or changes to be made to the AnimObjects. An Action object has a
type such as “MOVE”, “COLOR”, or “RESIZE” and a list of (x, y) offset pairs
defining a two dimensional sequence in the View co-ordinate system.

The most significant feature of the POLKA system is its support for
concurrent animation that accurately illustrates parallel program
concurrency. This is enforced by the programming of each AnimObject with
Actions to occur at particular View frame times. The “Animate” method
within the Animator class then checks all of the AnimObjects for each View
and ensures that any Actions programmed to occur at the current frame time
are executed and the appropriate “Update” and “Draw” methods invoked.

POLKA maintains the simple modification of graphical objects along paths
approach cultivated in Stasko’s previous Path-transition Paradigm, but adds
the capability to program actions into objects at desired animation times.
Although POLKA is only one part of the PARADE environment it is currently
the most complete component, two screen images illustrating both 2D and 3D
visualizations from POLKA are shown in figures 39 and 40, unfortunately no
screen images are currently available to illustrate the other two components.

John Stasko maintains a World Wide Web home page for the work done on
this and other SV systems by members of the Graphics Visualization &
Usability Center at the Georgia Institute of Technology, see
http://www.cc.gatech.edu/gvu/softviz/SoftViz.html.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 47.

Figure 39. A screen shot taken from POLKA showing a 2D representation of a quicksort
algorithm. The view on the left is a “blocks view” showing each element in an array as a block
whose height indicates the element’s value, and horizontal position indicates its position in
the array. The view on the right is a “chart view” in which the horizontal lines are used to
represent the swapping of elements, the start and end points of these lines indicate the
positions of the elements being swapped. Colour is used in both views to indicate the
partitioning of the array. This and other images are available from the web site at the Georgia
Institute of Technology (http://www.cc.gatech.edu/gvu/softviz/parviz/polkaanims.html).

Figure 40. A POLKA 3D representation of a quicksort algorithm in which the smaller blue
(dark) boxes to the right represent the values of the elements being sorted, and the
multicoloured (greyscale) planes to the left provide an impression of the history of the
exchanges in the program. The corner positions of each history plane are defined by the

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 48.

element’s blue block positions along a diagonal plane. This illustration is taken from (Stasko,
1992), page 13.

3. Conclusions

Section one of this review introduced the author’s intention, to apply software
visualization to support peoples use of genetic algorithms. It also discussed
what software visualization means to the author and why it is needed. This
first section closed with a description of the structure chosen for the review
and a brief overview of the systems included.

The second section then detailed, what are considered by the author, to be the
most significant features of each system. In this, the concluding section of this
document, an attempt is made to draw from the systems described which
features may be of importance for genetic algorithm visualization. The section
opens with a brief summary of the systems reviewed along with their
associated sources of reference. Some of the more important features are then
discussed with respect to GA visualization. Finally the section closes with
some examples of possible GA visualization views, illustrating a few of the
possible uses of the highlighted software visualization features.

3.1. Summary

The following list provides a summary of the systems reviewed in the
previous section. It is hoped that this may form a useful reference guide. Each
system is listed with a brief synopsis of its key features, the references used in
this review, and any known ftp or world wide web sites where further
information may be found.

3.1.1. Development Environments

PECAN - Supports the optional use of structured program command

templates.
- Provides concurrent graphical and text based views (a
significant contribution at the time).

(Reiss, 1985)

GARDEN - Support for free-form conceptual design and development.
- Object-orientated framework, multiwindow environment and
environmental support database.

(Reiss, 1987)

FIELD - Integration framework for a variety of UNIX based tools.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 49.

- Support for automatic data structure visualization.

(Reiss, 1990; Reiss & Cruz, 1994)

3.1.2. Program Development

TINKER - Lisp based programming by demonstration.

- Example demonstrations are generalised to form functions.
- Supports both top-down and bottom-up programming
approaches.

(Lieberman, 1981; Lieberman, 1993)

http://lieber.www.media.mit.edu/people/lieber/Lieberary/Ti
nker/Tinker.html

3.1.3. Program Development

PROVIDE - Presents graphical views of a program’s process states that can

be altered via direct manipulation.
- Supports bi-directional stepping through a program’s
execution.

(Moher, 1988)

Z Step ’94 - Supports the bi-directional stepping of code expressions and

execution output.
- Presents concurrent displays of the code expressions, their
values, and associated graphical output.

(Lieberman & Fry, 1995)

http://lieber.www.media.mit.edu/people/lieber/Lieberary/Z
Step/ZStep.html

TPM - Automatic visualization of Prolog programs.

- Supports bi-directional stepping through a program’s
execution.
- Provides views at two different levels of visual abstraction,
both united by the common visual metaphor of a “goal tree”.

(Brayshaw, 1990; Eisenstadt, 1984; Eisenstadt, 1985; Eisenstadt &
Brayshaw, 1987)

http://kmi.open.ac.uk/projects/projects.html#2.2

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 50.

TRI - Rule based program visualization.

- Supports bi-directional stepping through a program’s
execution.
- Presents a coarse-grained time specific view (i.e. a rule graph)
along with several fine-grained rule specific views.

(Domingue & Eisenstadt, 1989)

VITAL - The VITAL Workbench provides methodological and software

support for the design, development and validation of
knowledge based systems.
- Uses the Viz visualization framework and software library to
produce code, design and domain based views.

(Domingue, et al., 1994; Domingue, et al., 1992; Domingue, 1995;
Domingue, et al., 1993)

http://kmi.open.ac.uk/~john/vital/vital.html
http://kmi.open.ac.uk/~john/viz/viz.html

3.1.4. Algorithm Visualization

BALSA - Allows users to interact with the dynamically changing

graphical representations of their programs’ execution.
- Intended for use mainly as an educational aid for the teaching
of computer algorithms.

(Brown, 1987; Brown, 1988; Brown & Sedgewick, 1985)

ftp://ftp.dec.com/pub/DEC/macbalsa-demo.sit.hqx.Z
ftp://ftp.dec.com/pub/DEC/macbalsa-source.sit.hqx.Z
ftp://ftp.dec.com/pub/DEC/macbalsa-userguide.ps.Z

TANGO - Uses the Path Transition Paradigm to produce smooth frame

animations where an image is moved by small increments along
a path in a succession of animation frames.

(Stasko, 1989; Stasko, 1990)

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 51.

ZEUS - Multiview editing provided via the FormsEdit tool which
supplies a text editor, graphical editor and a resulting program
output viewer.
- The Zeus system examined the use of colour and sound as
additional communication channels capable of delivering
information not contained in the graphical or text based views.

(Avrahami, et al., 1989; Brown, 1991; Brown & Hershberger,
1992)

http://www.research.digital.com/SRC/zeus/home.html

ZEUS-3D - Basically ZEUS plus 3D perspective. Here the third spatial

dimension is recommended as an aid to illustrating additional
information, the previous states (i.e. history) of a two
dimensional view, or, as an integration mechanism for two
related two dimensional views.

(Brown & Najork, 1993)

http://www.research.digital.com/SRC/zeus/home.html

PAVANE - Proposes the declarative approach to parallel program

visualization. Where the views of a program are created
through a series of formal declarative mappings.
- Produces two or three dimensional, colour rendered,
animations.

(Roman, et al., 1992)

http://swarm.cs.wustl.edu/pavane.html

PARADE - Supports the production of application-specific parallel

program animations.
- Extends the Path-Transition-Paradigm to include the
occurrence of concurrent operations.
- Can produce either two or three dimensional colour
animations.

(Stasko, 1995; Stasko & Kraemer, 1992)

http://www.cc.gatech.edu/gvu/softviz/SoftViz.html
http://www.cc.gatech.edu/gvu/softviz/parviz/polkaanims.ht
ml

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 52.

3.2 Discussion

In the course of the above review it has became increasingly obvious that
software visualization is much more than pretty-printing or fancy pictures. It
is the principled application of techniques adopted from a variety of
disciplines including graphic design, psychology, and animation. Perhaps one
of the most influential factors for software visualization has been the rapid
increase in computing power over the past two decades. This has nurtured
the use of 2D and 3D graphical views, colour and sound, making software
visualization a practical reality.

The use of multiple, two and three dimensional colour views are common
place in most of the currently available systems. The effective application of
these features however can not be left to chance, but must be based on some
idea of effective representation. Several of the systems’ authors cite the
seminal works of Edward Tufte and Jacques Bertin who have written
extensively on the principled application of graphic design techniques for
representing information (Bertin, 1983; Bertin, 1987; Tufte, 1990).

However as well as bring out the common place approaches to viewing
information, the systems reviewed have illustrated many more novel
approaches. The work done by Brown and Hershberger on the effective use of
sound indicates the extent to which sound may be used (Brown &
Hershberger, 1992). Although no evaluation work was done on their
“auralizations”, the use of sound to reinforce the visual displays and signal
exceptional conditions is now a standard feature of the majority of direct
manipulation user interfaces. Whether audio can in fact be used to replace
some of the visual images is unconfirmed. This would involve the user
attending to both visual and audio messages concurrently. As these would be
communicating different information this would effectively double the user’s
cognitive load.

The use of bi-directional control mechanisms to step through a programs
execution is another interesting approach for supporting the user. The Open
University’s TRI, TPM and Viz systems all support bi-directional stepping as
does Steven Moher’s PROVIDE and Henry Lieberman’s ZStep’94 systems.
This feature could be used within genetic algorithm visualization to support
the users examination of an algorithm’s evolution. Providing the user can
view the data produced after each pass through the algorithm (i.e. each
“generation”), a bi-directional control mechanism could be introduced to
navigate through the algorithms evolution. Furthermore, at any backtracked
position in an algorithms evolutionary data set, the user could either step
forward to the next generation in the stored data set, or, restart the algorithm
again and let it re-evolve, quite possibly to a better solution.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 53.

This idea of evolutionary control through restarting an algorithm is even
more intriguing given that if the user were allowed to control the algorithms
parameters (as in the BALSA system) they could actually step back and forth
re-starting an algorithm with differing parameters. Given time this process
could be used to find the optimal set of problems for the attempted problem.

The use of a pause and directional control mechanism also introduces the idea
of version control. As the visualization system would be storing the
algorithms output data set, a simple extension of this would be to maintain
different versions of the GA’s evolution for different parameter settings.
These could then be used either to illustrate the influence of the parameters
over an algorithm, or to guide future efforts on similar problems.

The effective use of multiple views is a non trivial problem. In systems like
TRI and TPM there are specific fine-grained and coarse-grained views
intended to support different components of the user’s task. The FIELD
environment supports the integration of various Unix based programming
tools, and the VITAL workbench supports the use of task-specific tool sets.
All of these are tailored to the needs of the user and the requirements they
have for each particular task. Similarly a GA visualization system must
consider the tasks involved in applying GAs and support these accordingly.

For example, a GA visualization system to be used as an educational aid to
teach how GAs work, the views presented should illustrate the operations of
the algorithm. Hence algorithm visualization should be used to visually
present the generation, evaluation, selection and reproduction of the
representative strings (i.e. “chromosomes”). This could easily involve a
roulette wheel image as used by (Goldberg, 1989) to illustrate the selection
procedure, or a cut and paste image to illustrate the crossover genetic
operator.

In order to illustrate an algorithm’s execution the views should reflect the
data sets changes over successive generations i.e. it should present data
visualizations. Finally for the process of programming GAs, like any
programming task, the effective application of code visualization techniques
may best support the user’s needs.

Is the best solution therefore to develop a task specific visualization system? It
is the author’s opinion that it is not. Like TRI, TPM, FIELD and the VITAL
Workbench it is the views that are unique to the task, not the system.
Provided a consistent framework can be made available within which a
library of views can be used, there is no foreseeable reason why a
visualization system cannot support all these tasks. Furthermore, providing
the user interface is flexible enough to accommodate a wide range of
experience in its users, the one visualization system could be used by the

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 54.

same user as they become more familiar with GAs and progress from learning
about GAs, to developing and applying GAs of their own.

The idea of a software library containing different views is used in several of
the above systems. A library of possible views gives the user the freedom to
choose their preferred combinations of views. This includes the freedom to
create duplicate views and uninformative views. However, the use of default
combinations of views suited for particular tasks enables the provision of
recommended, complimentary view combinations (like those presented in the
BALSA demo package).

A library that cannot be extended however, is limited. As new views are
devised some simple means of extending the library becomes necessary. This
may be done using a tailored high level command language, as is the case in
Viz, TANGO and POLKA, or through the use of a graphical editor, as is the
case with the DANCE animation tool, and the FormsEdit editor used in
ZEUS.

As has been discussed in this section the key features which seem most
appropriate for the development of genetic algorithm visualizations are as
follows:

- The principled use of 2D, 3D and colour views.
- The use of sound to illustrate additional information, indicate
exceptional conditions and reinforce the visuals.
- The provision of a bi-directional control mechanism for
stepping through an algorithms evolution, with the added
possibility of recording multiple evolutions.
- The provision of an extendible view library with
recommended task orientated view combinations.

The following final sub-section, shows how some of these features could be
presented in a series of design models.

3.3. Design ideas

This section examines some design ideas for the inclusion of the key features
highlighted in the previous sub-section.

3.3.1. Principled 2D, 3D and colour views

As previously noted the design of the individual views is a crucial factor in
how useful a visualization system will be (section 3.2). It is therefore,
essential that some effort is made to ensure the views used are as informative
as possible. Design principles, such as those proposed by Edward Tufte and

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 55.

Jacques Bertin, provide some guidance for this (Bertin, 1983; Bertin, 1987;
Tufte, 1990). A complete description of such guidelines is beyond the scope of
this review, therefore the reader is merely recommended these texts with the
hope that they may be of help.

3.3.2. The use of sound

Sound could be used within a GA visualization system to indicate the
algorithm’s operations. Unless the user is specifically interested in the
individual chromosomes’ selection, reproduction and evaluation operations
they may not be visually presented. However, sound could be used
independently of the visual images to communicate these operations. This
may be useful in illustrating the execution speed, the occurrence of
crossovers, mutations, or other genetic operations, and the discovery of an
acceptable solution.

An possible method for this would be to use a clock metaphor. An hour-
chime could be used to indicate each pass through the algorithm, and a tick
could be used to indicate each operation. As there are different types of
operations within each algorithm (i.e. selection, crossover, mutation, etc.) a
variation in pitch could be used to indicate each operation’s type, these could
be further categorised with the use of distinctive chimes to indicate the
beginning of each algorithm component. An alarm could be used to indicate
the discovery of an optimal, or acceptable, solution. A simple example
illustrating these ideas is given in table 4 below.

 Algorithm Components Audio signal

 1. Start
 2. Initial Population Creation Chime once
 2.1. generate random chromosome tick
 2.2. evaluate chromosome tock
 3. Population Reproduction Chime twice
 3.1. select two chromosomes tick
 3.2. crossover chromosomes tack
 3.3. evaluate chromosomes tock
 4. Is the optimal solution reached?
 No - goto 3. Hour-chime
 Yes - Stop Alarm buzz

Table 4. An example clock based audio visualization suitable for indicating a simple genetic
algorithm’s internal operations.

The use of sound to indicate exceptional conditions and reinforce visual
images should also be considered as additional techniques for improving a
visualization system. No specific designs for reinforcing sounds are given
here as their design is dependent on the visual images presented. One
example of sound as an indicator of exceptional conditions has already been

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 56.

given in the clock based audio visualization. There sound was used to
indicate the discovery of an optimal solution. Sound benefits from the fact
that it can be used as an attention grabbing form of communication and can
therefore be used to draw attention to any important, or exceptional, events.

3.3.3. A bi-directional control mechanism

A genetic algorithm’s evolution is a strongly guided but essentially random-
based search. The initial population, the position of crossover points between
mating chromosomes and the occurrence of mutation, are all random events.
If two identical GAs were executed side by side there is no reason why they
couldn’t evolve completely different solutions.

Therefore, in the case of a controller used to step from one generation to the
next the difference between stepping forward one generation in an
algorithm’s trace data-set and executing the algorithm to generate the next
generation must be made explicit. The following example design illustrates
the use of separate control buttons for the execution (labelled “play”) and the
stepping (labelled “step”) of a GA (see figure 41).

BACKWARD PAUSE FORWARDPLAY

Figure 41. A Bi-directional control panel suitable for use within a genetic algorithm visualization

system.

The use of a single step stepper to navigate through an execution trace can be
frustrating when the user wishes to step to the start, end or any specific
position in between. Therefore, in order to step through a program at an
appropriate rate additional buttons can be made available to rewind to the
start, fast-forward to the end, or step N positions forward or backward
(where N is a positive integer). A second example illustrating this is given in
figure 42.

PAUSE

PLAY

1 1

55

START END

Figure 42. A bi-directional control panel capable of multiple-step stepping. The user can edit the
number of steps taken in the outer-middle two stepping buttons, which are currently set to 5

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 57.

(generations). The outer-bottom two stepping buttons enable the user to go directly to the first
generation i.e. the start, or the latest generation i.e. the end.

These are two sample designs illustrating how a control panel may be used
for navigation. Further extensions can be added to permit version control
over stored execution traces. An example addition to the control panel shown
in figure 42 is given in figure 43, below. Here the user can either select their
data set from a previously loaded data library, or, record new data using their
own algorithm.

Data Library Data Set

TravellingSalesMan PMX+Mut.1

PAUSE

PLAY

1 1

55

START ENDRECORD

Figure 43. A bi-directional control panel and data selection dialogue. The user’s data library and data

set are selected from a pull-down menu, new data library or data set labels can be typed directly into the
Data Library and Data Set boxes, respectively.

3.3.4 An extendible view library

A view library would permit the user to select views suited to their particular
task. The use of default task orientated view combinations may be one
method of encouraging inexperienced users to use complimentary views,
then when the user gains more experience they may create their own
combinations based on their experiences. A design for a view selection and
parameter allocation dialogue is given in figure 44.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 58.

View
Library

View Contents: X Axis = Generation Number

Y Axis = Best Chromosome Fitness

Y Axis = Average Chromosome Fitness

Y Axis = Worst Chromosome Fitness

View Label: 2D Fitness vsTi me Graph

View Type: View Parameters: Algorithm Parameters:

2D Graph

3D Graph

2D Scatter-plot

3D Scatter-plot

2D Histogram

3D Histogram

Pie Chart

Hinton Block Diagram

=

Chromosome Fitness

Population's Total Fitness

Average Chromosome Fitness

Best Chromosome Fitness

Worst Chromosome Fitness

Generation Number

Popualtion Size

Mutation Rate

X Axis

Y Axis

Colour

Z Axis

View Type: 2D Graph

Figure 44. A view selection and parameter allocation dialogue suitable for use within a GA
visualization system. The user can either select a view from the library using the pull-down menu on the
View Label box, or type in a new label and then define it using the selection menus in the lower half of
the dialogue. Each views type and contents are displayed in the upper half of the dialogue, below the

View Label.

As noted in the previous sub-section (3.2) a library should be extendible in
order to allow the creation and application of new views. Selecting an
appropriate method for view definition is a difficult task, visual languages
can suffer from being too specific and as a result prevent the user from freely
expressing their ideas, conversely command languages can be too much
bother for non-programmers to use freely.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 59.

A compromise to this problem may be to support both graphical and text
editing (as is the case in ZEUS), or to use a visualization specific high-level
language that reduces the amount of programming effort required (as in the
case in Viz, TANGO, and PAVANE). Providing a standard protocol is used
for the definition of each new view’s parameters, new views could be
incorporated into the view library by simple cut and paste, or drag and drop
operations.

References

Avrahami, G., Brooks, K. P., & Brown, M. H. (1989). A Two-View Approach
to Constructing User Interfaces. Computer Graphics, 23(3), 137 - 146.

Bertin, J. (1983). Semiology of Graphics (Berg, W.J., Trans.). Wisconsin: The
University of Winsconsin Press.

Bertin, J. (1987). The Graphic Sign System (A Semiological Approach to
Graphics). In Graphics and Graphic Information Processing (pp. 176 - 232).
Berlin: Walter de Gruyter & Co.

Brayshaw, M. (1990). Visual Models of PARLOG Execution (Technical Report
No. 64). The Open University.

Brown, M. H. (1987). Algorithm Animation. Cambridge, MA: MIT Press.

Brown, M. H. (1988, May 1988). Exploring Algorithms Using Balsa-II.
Computer, p. 14 - 36.

Brown, M. H. (1991). Zeus: A System for Algorithm Animation and Multi-
View Editing. In IEEE Workshop on Visual Languages, (pp. 4 - 9). Kobe,
Japan.

Brown, M. H., & Hershberger, J. (1992). Color and Sound in Algorithm
Animation. Computer, December 1992, p. 52 - 63.

Brown, M. H., & Najork, M. A. (1993). Animating Algorithms Using 3D
Interactive Graphics (Technical Report No. 110a). Digital SRC.

Brown, M. H., & Sedgewick, R. (1985). Techniques for Algorithm Animation.
IEEE Software, January 1985, p. 28 - 39.

Domingue, J., & Eisenstadt, M. (1989). A New Metaphor for the Graphical
Explanation of Forward-Chainig Rule Execution (Technical Report No. 52).
The Open University.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 60.

Domingue, J., Eisenstadt, M., & Price, B. (1994). The VITAL Visualisation Tool
Report (Technical Report No. T-3.4.2). The Open University.

Domingue, J., Price, B. A., & Eisenstadt, M. (1992). Viz: A Framework for
Describing and Implementing Software Visualisation Systems. (Internal
Report), The Open University, Human Cognition Research Laboratory.

Domingue, J. B. (1995). Software Visualization Based KBS Validation
(Technical Report No. KMI-TR-8). The Knowledge Media Institute, The Open
University.

Domingue, J. B., Motta, E., & Watt, S. (1993). The Emerging VITAL
Workbench. In N. Aussenac, G. Boy, B. Gaines, M. Linster, J. G. Ganascia, & Y.
Kodratoff (Ed.), Knowledge Acquisition for Knowledge-Based Systems 7th
European Workshop. EKAW ‘93., (pp. 320-339). Toulouse and Caylus,
France.: Springer-Verlag.

Eisenstadt, M. (1984). A Powerful Prolog Trace Package. In European
Conference on Artificial Intelligence. Pisa, Italy.

Eisenstadt, M. (1985). Tracing and Debugging Prolog Programs by
Retrospective Zooming (Technical Report No. 17). The Open University,
Human Cognition Research Laboratory.

Eisenstadt, M., & Brayshaw, M. (1987). The Transparent Prolog Machine
(TPM): An Execution Model and Graphical Debugger for Logic
Programming. (Technical Report No. 21A). The Open University, Human
Cognition Research Laboratory.

Goldberg, D. E. (1989). Genetic Algorithms in Search Optimization and
Machine Learning. Addison Wesley.

Lieberman, H. (1981). Tinker: Example-Based Programming for Artificial
Intelligence. In International Joint Conference on Aritificial Intelligence, 2 (pp.
1060). Vancouver, B.C.

Lieberman, H. (1993). Tinker: A Programming by Demonstration System for
Beginning Programmers. In A. Cypher (Eds.), Watch What I Do:
Programming by Demonstration (pp. 48 - 64). Cambridge, MA: MIT Press.

Lieberman, H., & Fry, C. (1995). Bridging the gulf between code and
behaviour in programming. In CHI 95.

Moher, T. G. (1988). PROVIDE: A Process Visualisation and Debugging
Environment. IEEE Transactions on Sofware Engineering, 14(6), 849 - 857.

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 61.

Motta, E., Rajan, T., & Eisenstadt, M. (1989). Knowledge Acquistion as a
Process of Model Refinement (Technical Report No. 32). Human Cognition
Research Laboratory, The Open University.

Price, B. A., Baecker, R. M., & Small, I. S. (1993). A Principled Taxonomy of
Software Visualisation. Journal of Visual Languages and Computing, 4, 211 -
266.

Reiss, S. P. (1985). PECAN: Program Development Systems that Support
Multiple Views. IEEE Transactions on Software Engineering, SE-11(3), 276 -
285.

Reiss, S. P. (1987). Working in the Garden Environment for Conceptual
Programming. IEEE Software, November 1987, p. 16 - 27.

Reiss, S. P. (1990). Interacting with the FIELD environment. Software-Practice
and Experience, 20(S1), 89 - 115.

Reiss, S. P., & Cruz, I. F. (1994). Practical Software Visualisation. In M. Brown,
J. Domingue, B. Price, & J. Stasko (Ed.), Software Visualisation Workshop -
SIGCHI 94.

Roman, G. C., Cox, K. C., Wilcox, D., & Plun, J. Y. (1992). Pavane: a system for
declarative visualisation of concurrent computations. Journal of Visual
Languages and Computing, 3, 161 - 193.

Stasko, J. T. (1989) TANGO: A Framework and System for Algorithm
Animation. PhD Dissertation, Brown University.

Stasko, J. T. (1990). The Path-transition Paradigm: a Practical Methodology for
Adding Animation to Program Interfaces. Journal of Visual Languages and
Computing, 1(3), 213 - 236.

Stasko, J. T. (1992). Three Dimensional Computation Visualisation (Technical
Report No. GIT-GVU-92-20). Georgia Institute of Technology.

Stasko, J. T. (1995). The PARADE Environment for Visualising Parallel
Program Executions: A Progress Report (Technical Report No. GIT-GVU-95-
03). Georgia Institute of Technology, Graphics Visualisation and Usability
Centre.

Stasko, J. T., & Kraemer, E. (1992). A Methodology for Building Application-
Specific Visualisations of Parallel Programs (Technical Report No. GIT-GVU-

The Visualization of Genetic Algorithms - Related Work The Knowledge Media Institute

page 62.

92-10). Georgia Institute of Technology, Graphics Visualisation and Usability
Center.

Tufte, E. R. (1990). Envisioning Information. Cheshire, Connecticut: Graphics
Press.

