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Abstract 
 
Genetic Algorithms are robust search algorithms capable of finding multiple 
solutions to complex problems. In order to ensure that the algorithm is 
working correctly it is necessary to examine the steps involved in its 
execution and the results produced at each stage. It is proposed that Software 
Visualization may be one technique that could support this task. This review 
examines a number of Software Visualization systems, discusses the key 
features that may prove useful for visualizing Genetic Algorithms, and 
presents some screen representations that illustrate some possible design 
configurations. 
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1. Introduction 
 
1.1. Genetic Algorithm Visualization 
 
Genetic Algorithms (GAs) are robust search algorithms capable of finding 
multiple solutions to complex problems. During their search for such 
solutions GAs produce vast multi-dimensional data sets, from which possible 
solutions emerge. In order to guarantee the quality of those solutions the user 
must ensure that the algorithm’s parameters are appropriately tuned. This  
requires insight into the algorithm’s execution operations and output data set. 
It is proposed that this process would be best supported by the use of 
Software Visualization (SV). 
 
This report is split into three sections. Section 1 is aimed at introducing 
software visualization, it explains the structure adopted in the review, and 
provides an overview of each system included. The purpose in presenting an  
overview of each system in section one is two fold; first of all to enable those 
readers who are not directly interested in each and every system to pick and 
choose detailed sections relevant to their interests, and secondly, for those 
who are interested in all of the systems to support their sense of orientation 
whilst examining each one. 
 
Section two contains a detailed review of each system. Finally section three 
presents a list summarising each system, discusses some of the features which 
may prove useful for GA visualization, and presents some screen 
representations of possible design configurations.  
 
1.2. What is Software Visualization? 
 
From a Psychologist’s view-point Visualization refers to the use of the “third 
eye”, an inner eye, to mentally create internal views from information 
received via our five physical senses. We use this internal viewing system in 
order to make sense of the external world. Visualization systems therefore are 
created with the specific purpose of supporting the user’s mental 
visualization process.  
 
Software Visualization has been more formally defined as: “the use of the 
crafts of typography, graphic design , animation  and cinematography with 
modern human-computer interaction technology to facilitate both the human 
understanding and effective use of computer software” (Price, et al., 1993), 
page 213. Although this particular definition focuses mainly on the use of 
visual support, as the technology to involve some of our other four senses is 
now a practical reality, it is felt that a wider basis for supporting the mental 
visualization process is becoming possible.  
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1.3. Why is there a need for Software Visualization? 
 
As was noted in the previous section, the purpose of the mental visualization 
process is to enable us to make sense of our external world. Mental 
visualization therefore, is central to understanding, in fact, it could even be 
considered as a foundational part of  consciousness. In the case of 
understanding computer software it is when our mental visualization process 
is unable to construct an accurate representation of the dynamic behaviour of 
the static code that the majority of problems arise. 
 
The process of correcting the errors resulting from such false interpretations is 
known to as “debugging”. The debugging process itself can be further 
divided into two principal activities; Instrumentation and Localisation 
(Lieberman & Fry, 1995).  
 
Instrumentation is the process of finding out what the behaviour of a 
particular piece of code is. Traditional approaches to this process include the 
use of tracers, breakpoints and the manual insertion of print statements 
(Lieberman & Fry, 1995). All of these techniques require the programmer to 
have some idea of the area in which the bug i.e. error occurred. On occasions 
where the programmer is unsure of the bug’s source this can lead to an 
exhaustive and time-wasting search.  
 
Localisation is the process of identifying the individual piece of code 
responsible for an error. The traditional approach for supporting this activity 
is an execution stepper (Lieberman & Fry, 1995). A stepper enables the 
programmer to incrementally step through the program examining the 
output at each stage. A fatal flaw of the traditional stepper is that it provides 
no control over the level of detail shown. Typically steppers stop before the 
execution of each expression and allow the programmer to decide whether or 
not to examine the next expression in detail. This again reintroduces the 
problem associated with traditional instrumentation tools, i.e. that the 
programmer must have some idea of the source of each bug. 
 
Although these approaches go some of the way to helping Programmers 
analyse their code clearly more could be done. Software Visualization seeks to 
build on these traditional approaches through the introduction of 
typography, graphic design, animation, cinematography and Human 
Computer Interaction technology. By using these to improve the support for 
our mental visualization process SV will, in effect, improve our 
understanding and reduce the occurrence of errors. In cases where errors do 
occur, SV will improve the programmers ability to locate and understand the 
elements at fault. 
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1.4. Review Structure 
 
SV systems are often classified into one of two broad categories; Program 
Visualization (PV) systems, and Algorithm Visualization (AV) systems. 
Program Visualization is the visualization of a program’s code or data i.e. the 
basic elements that define the program. Algorithm Visualization on the other 
hand is the visualization of a program’s algorithm i.e. the program’s 
fundamental operations. This distinction may be made clearer with an 
example. Take a program that sorts a series of numbers into ascending order, 
it could be illustrated either by using Program Visualization, or, Algorithm 
Visualization. 
 
Program Visualization could be used to illustrate the execution of the 
individual program commands by highlighting each line as it is executed, the 
effect on the program’s data set could then be shown by printing each new 
version created. Algorithm Visualization on the other hand, could illustrate 
the series of  numbers using an abstract representation such as printed blocks 
whose height represented the value of each number. The programs’ operation 
could then be shown by moving each block into its correct position 
throughout the programs execution. 
 
In other words, PV systems are tied to the programming language and data 
structures used because they rely on them for their presentation format, AV 
systems however, use abstract presentation formats and therefore, are not 
directly tied to the underlying programming language or the data structures 
used.  
 
Although this dichotomy covers all SV systems the area of application for 
each PV system varies quite significantly. Therefore, the following review is 
structured, not as a simple dichotomy of PV versus AV, but it also  sub-
divides the PV systems into three groups, based on their intended area of 
application. The Venn diagram shown in figure 1 illustrates the categories 
chosen and the systems associated with each.  
 
The three sub-groupings adopted for the review of Program Visualization 
systems were chosen in order to reflect the three main stages of program 
development, namely; Program Design, Program Construction, and Program 
Debugging. As can be seen in figure 1 above some systems support all three 
of these stages, in the review these are referred to as “Development 
Environments”. 
 
The application of Visualization to the Program Construction stage refers to 
systems capable of supporting the Programmer in the task of writing 
program code. However, this should not be confused with Visual 



The Visualization of Genetic Algorithms - Related Work  The Knowledge Media Institute 
 
 

 
 
 
 

page 5. 
 

Programming where the Programmer constructs programs purely through 
the direct manipulation of graphical objects (icons). 
 
Program Debugging is perhaps one of the most obvious application areas for 
Software Visualization as the Programmer’s ability to identify and remove 
errors is largely dependant on their accurate understanding of the program’s 
operation (see Section 1.3, above). 
 

Program 
Debugging 

Program 
Design

Program 
Construction

PECAN

GARDEN

FIELD

TINKERPROVIDE

TPM

TRI

Z Step '94

VITAL

PARADE 
(POLKA)

PAVANE

BALSA

ZEUS

ZEUS-3D

TANGO

Algorithm 
Visualization

 
 
Figure 1. A Venn diagram illustrating the types of SV systems discussed in this review. The 
types of systems reviewed are labelled in italics and the names of the systems reviewed are 
labelled in capitals (except ZStep’94). 
 
The final section of the review is that of Algorithm Visualization as 
previously noted the approach to visualizing a programs algorithm is quite 
distinct from visualizing its code or data. The review of algorithm 
visualization systems requires no sub-division as their area of application 
does not vary so widely. 
 
1.5.  Overview 
 
This sub-section contains a brief overview of the systems reviewed in section 
two. This illustrates the structure used in the review and provides an initial 
introduction to the examined systems. 
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1.5.1. Development Environments 
 

PECAN - A family of programming systems that supports the optional 
usage of structured templates for program commands, along 
with provision for maintaining concurrent graphical and textual 
views of a program.  

 
GARDEN - An automated design environment to support conceptual 

programming. This is made up of three basic components; an 
object oriented framework, a multiwindow environment, and an 
environment support framework. 

 
FIELD - A programming environment aimed at providing an 

integration framework for UNIX based tools with direct support 
for program and data visualization. Particularly significant for 
its introduction of the “selective broadcasting” integration 
mechanism. 

 
1.5.2. Program Construction 
 

TINKER - A program-by-example system that provides instant 
graphical and textual feedback. A function is created through a 
series of example steps, once completed the steps are 
generalised and displayed as program code.  

 
1.5.3. Program Debugging 
 

PROVIDE - A program evaluation and debugging environment 
implemented in order to illustrate the open access debugging 
approach proposed by Thomas Moher. This approach increased 
the direct engagement between people and their programs by 
the graphical presentation of program states at a chosen level of 
granularity, which the users could then directly manipulate and 
observe the results through immediate feedback. 

 
Z Step ‘94 - This Lisp program debugging environment produces a 

(textual) code and (graphical) output view of the program under 
examination.  It provides bi-directional control over both the 
code expression execution and output execution. It also includes 
the option to displays the evaluation of each program 
expression as it is found. 

 
TPM - A program visualization system that is capable of automatically 

visualising any Prolog program  ran through its interpreter. This 
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was one of the first systems to introduce bi-directional trace 
stepping. It uses a goal tree visual metaphor for both coarse 
grained and fine grained views and hence provides a highly 
consistent interface mechanism. 

 
TRI - A very flexible rule-based program visualization system that 

presents a coarse-grained time specific view of the rule 
executions in a “rule graph”, and more fine-grained rule specific 
views through “three way view frames”, “predicate windows” 
and “node examination frames”. Bi-directional trace stepping 
and proof tree views are adopted from the TPM system. 

 
VITAL - This was a international research and development project 

over four and a half years aimed at the provision of 
methodological and software support for the development of 
large, industrial, embedded Knowledge-Based System  
applications. This project produced the “VITAL Workbench” 
and the “Viz” visualization framework. The most notable 
features of this project are the extensive provision of 
visualization support (via the “Viz” framework and software 
library) and the close integration of an assortment of design, 
development and validation tools through a common interface 
mechanism (the “VITAL Tower”). 

 
1.5.4. Algorithm Visualization 
 

BALSA - This was one of the first real-time algorithm visualization 
systems. Its primary application is as a teaching aid for 
computer science students studying computer algorithms. The 
student interacts with the visualization system in a set-up and 
run cycle: the algorithm, parameters and display format are first 
set-up, and then run. The students then observe the operations 
of the algorithm during its execution. 

 
ZEUS - This system uses objects, strong-typing, parallelism and 

supports the graphical development of views. Multi-view 
editing is introduced to this system through the adoption of an 
editor which enables the user to define, or edit, a view through 
either text or graphical manipulation. 

 
ZEUS-3D - This is basically ZEUS plus 3D. The systematic approach 

taken with sound and colour in the ZEUS system is applied in 
this system to 3D. 3D is used for: the representation of 
additional information, the integration of two normally 2D 
views, and the representation of time in an originally 2D view. 
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TANGO - The implementation of an algorithm animation framework 

devised to produce smooth, colour animations. The framework 
has three main components; the algorithm itself, the mapping of 
the algorithm’s operators to create a control file, and the 
resulting animation. The significance of this system is in the 
animation component where animations are created using the 
“Path Transition Paradigm”. Four abstract data types are 
available within this paradigm; images, locations, paths and 
transitions from which all animations are constructed. 

 
PAVANE - This is a parallel program visualization system capable of 

producing 3D colour animations. A shared dataspace is used to 
maintain the visualization of concurrent processes. A 
declarative approach is adopted in which program states are 
mapped from the state space through a proof space, object 
space, and animation space to produce the corresponding 
visualization images.  

 
PARADE (POLKA) - A parallel program animation development 

environment designed to support the construction of 
application specific  animations by programmer’s with little or 
no experience of graphics programming. POLKA is the name of 
the animation component used to construct the visualizations 
used. POLKA is available in either 2D, on X Window systems, 
or 3D on Silicon Graphic’s GL systems. 
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2. A Review of Software Visualization 
 
The following section presents a detailed account of the systems mentioned in 
the above overview (section 1.5). Just like the previous section, the following 
is ordered with respect to the foreseen area of application. It is hoped that this 
will support the comparison of like with like and enable the reader to 
maintain a sense of perspective. 
 
2.1. Program Development Environments 
 
2.1.1. PECAN 
 
The PECAN “family of programming systems” was developed by Steven 
Reiss at Brown University (Reiss, 1985). At the time of its development, the 
two main differentiating features between this system and several of its 
contemporaries were 1) its extensive use of the graphical facilities available on 
personal workstations, and 2) its support for multiple concurrent views. 
 
Some of the key features of the PECAN system include: the provision of an 
undo facility whereby the user can undo and redo any action back to the 
beginning of the current session, the optional use of structured templates for 
support whilst writing the program code, and finally, the provision of a 
framework that enables the use of a variety of (algebraic) programming 
languages via the same commands. 
 
PECAN provides support for three different types of views; program views, 
semantic views and run-time views.  Examples of Program Views include the 
provision of a Syntax-directed Editor and Nassi-Shneiderman (structured 
flow-chart) graphs. Examples of the Semantic Views provided within PECAN 
include Symbol Table and Data Type views which illustrate the scope and 
type definition of the current symbol being edited, an Expression view that 
breaks the current expression down into an expression tree, and a Flow 
Graph view that shows the flow of control through the program on a system 
produced flow chart. Finally, an example of an Execution view is the Stack 
view this illustrates the current state of the execution stack. A series of 
sequential execution frames make up the Stack view each frame includes the 
frame reference, the variables used in that frame and their associated values. 
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Figure 2. An example PECAN screen view. This figure  shows examples of the Syntax-
directed Editor (bottom right), Flow Graph (middle), Nassi-Shneiderman flow chart (lower 
left), and Execution and Data Stack views (middle left). 
 
2.1.2. GARDEN 
 
In the development of the GARDEN Automated Design Environment (Reiss, 
1987) Reiss argued that a design environment should not constrain the 
designer to the design methods implemented therein. He proposed that 
designers naturally use a variety of techniques when designing their systems, 
and these techniques are often modified to suit the problem better with new 
strategies, or languages, being constructed to simplify the description of an 
otherwise complex design. In order to support such a free-form and non-
invasive approach, Reiss developed the GARDEN design environment for 
conceptual programming. This environment is comprised of three basic 
components; an object oriented framework,  a multiwindow environment and 
an underlying environmental support database.  
 
The object oriented framework encourages the use of both data and control 
abstraction. The objects form a consistent basis for supporting multiple 
languages as any language can be defined in terms of its underlying 
constructs. Furthermore, as the objects can be used to represent programs 
GARDEN has no bias toward either graphical or textual syntactic forms. At 



The Visualization of Genetic Algorithms - Related Work  The Knowledge Media Institute 
 
 

 
 
 
 

page 11. 
 

the time of publication however, the GARDEN environment provided only a 
single textual Lisp-like form of representation, although this is not suitable for 
all languages, the problem here is one of implementation rather than design. 
 
Within the multiwindow environment three editors are available; the text 
editor, the graphical editor and the object-based browser. Additional 
windows can also be used to display interactive read-eval-print loops, user 
controlled system  browsers, document editors, and any additional input/ 
output windows. Multiple instances of these display windows can be used 
simultaneously, with any necessary view updates being automatically 
maintained. 
 
Finally the environmental support is provided by an underlying object-
oriented database which is used to store all of the objects in current use, 
effectively saving the entire environment. With the necessary consistency 
checking and access control several programmers may share a common object 
space for collaborations. Version control is also supported by enabling users 
to create and restore different versions of their environment.  
 
2.1.3 FIELD 
 
The FIELD (Friendly Integrated Environment for Learning and Development) 
programming environment was designed for both teaching and research 
(Reiss, 1990). FIELD provides a framework for the integration of UNIX based 
tools into a consistent programming environment. The key concept 
underlying this environment is the integration mechanism called “selective 
broadcasting”. At the beginning of a session each of the tools being used 
sends a message to the central message server notifying it of the messages for 
which they hold an interest. During use the central message server receives 
incoming messages from the tools and matches them to the interesting 
messages previously declared. The corresponding tools  are then sent a copy 
of that message.  
 
The FIELD environment emphasises program and data visualization. Support 
is provided for the automatic visualization of the user’s data structures, 
including the dynamic updating of these structures whilst the program 
executes. Program execution can be monitored either by directly viewing the 
source code or indirectly by using a code visualization such as a call graph. 
Annotations may also be added in order to provide hooks for algorithm 
animations. An example screen view of the FIELD environment is given in 
figure 4. 
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Figure 4. An example screen view of the FIELD environment illustrating: the control panel 
used to select the tools (top left), the debugging tool “dbg” (top right), the annotation editor 
“annotddt” (bottom left), the flow chart view “flowview” (middle right) and the execution 
view “QuickDraw” (bottom right). This figure is available from the World Wide Web research 
page at Brown University (see http://www.cs.brown.edu/ research/hpde/arpa-quad-
94.html). 
 
In a recent report on software visualization (Reiss & Cruz, 1994) Reiss and 
Cruz point out: 
 

“While this {the FIELD environment} provides information, it is not 
sufficient for real software understanding. The questions of interest 
often cannot be characterised by one of the canned views. Also, the 
amount of effort required to specify the particular aspect of the generic 
view that was needed was perceived as too much.”  

 
In an extension of the work originally done on the FIELD environment Reiss 
and Cruz are now examining the use of a visual query interface. They 
propose that by storing all the data produced in a virtual database, the user 
could then use a visual query interface to find any data of interest quickly and 
easily. Reiss and Cruz propose that querying for software understanding 
should, therefore, be at a high-level of abstraction, easy to do, and should 
make use of the same metaphors as the original visualization. The DOODLE 
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database query language was adopted for this purpose. Within DOODLE a 
visual constraint language is used to specify by example the data display.  
 
Reiss and Cruz also proposed the adoption of 3D, reasoning that the use of an 
additional spatial dimension permits a more compact presentation of data 
and more flexibility for the design of new presentations. Three new tools are 
being created to support this, namely; PLUM, PEACH and TWIG. PLUM is a 
style manager which offers a variety of different, parametrized 3D 
presentation styles that can be combined hierarchically to form a desired 
view. PEACH is a hierarchical browser used as a front end for the PLUM style 
manager. TWIG is the name given to the specification definition language and 
its associated interpreter. TWIG was based on the GELO graphical editor 
used within the GARDEN environment and is designed to be suitable for 
graphical editing.  
 
2.2. Program Development 
 
2.2.1. TINKER 
 
The TINKER programming environment is a Lisp-based environment in 
which a programmer may create a program through demonstrating its steps 
on representative examples (Lieberman, 1981).  
 

 
 
Figure 5. A TINKER screen view depicting the stack window (top-left), the function window 
(bottom-left) and the graphical execution window (bottom-right) of a block manipulation 
program. This figure was taken from (Lieberman, 1993), page 58. 
 
As indicated in the above figure TINKER uses three types of windows; a stack 
window, a functions window and a graphical window. The stack window 
shows the previous states of the program’s stack. The components of the 
program stack can be selected as arguments for further examples. The 
function window shows the generalised function code i.e. the code 
generalised from the user’s example commands. The graphical window 
shows a visual representation of the current example. All three views are 
continuously updated throughout interaction in order to reflect the 
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programmer’s actions. Hence, the user is provided with both code and 
graphical confirmation of their examples.  
 
Once an example is completed the individual steps are generalised to form a 
program. It should be noted that unlike the majority of programming-by-
example systems TINKER does not infer or assume anything it is not 
explicitly told by the user. Any conflicts which arise between examples, such 
as conditional conflicts, are taken up immediately with the user who must 
specify a predicate to distinguish between the conflicting cases.  
 
An advantage of this incremental programming  and immediate feedback 
approach is that the user can freely choose to program in a “top-down” or 
“bottom-up” manner. By constructing programs “bottom-up” the user may 
start with the most common base case and then further refine their program 
by adding more specific exceptions. The “top-down” approach supports the 
construction of  specific examples which can be further reduced to more 
common cases.  
 
An example of these two approaches could be taken from a definition for 
birds in which the most common case is that all birds fly, and a more specific 
case is that penguins and emus don’t fly. A top-down definition would start 
with the specific example and work down to the more common base case, 
whereas the bottom-up definition would start with the base case and work up 
to the specifics. The approach adopted by the programmer will be dependent 
on the level of the information known. 
 
Further details on this system are available from the World Wide Web, see 
http://lieber.www.media.mit.edu/people/lieber/Lieberary/Tinker/Tinker.
html 
 
2.3. Program Debugging 
 
2.3.1. PROVIDE 
 
PROVIDE is a PROcess Visualization and Debugging Environment 
introduced to demonstrate the principles behind Moher’s open access 
approach to program execution and debugging (Moher, 1988). Standard 
dynamic debugging capabilities are extended by ((Moher, 1988), page 849); 
 

- the use of computer graphics, rather than text, to depict process 
states; 
- continuous, rather than query-driven, display of user-defined process 
state representations; 
- direct manipulation of graphic process state representations, rather 
than a command language, for modifying data objects; 
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- random, rather than sequential and unidirectional, access to all 
process states arising during execution; 
- interactive control over program granularity; 
- state selection based on data states as well as control states, and 
- automatic consistency maintenance of process state displays in the 
face of modifications to programs and data. 
 

The primary goal of the PROVIDE system is to allow users to observe and 
control program execution at a suitable level of extraction. To this end 
PROVIDE enables users to specify any program objects of interest, these 
objects are then allocated a permanent display area during execution and are 
automatically maintained. Users can also modify views after compilation, as 
the use of deferred binding enables view editing to take place outside the 
traditional edit-compile-execute cycle. Another significant feature of 
PROVIDE  is its playback facility in which users can  control not only the 
apparent speed, but also, the apparent direction of execution (a feature also 
supported by Eisenstadt and Brayshaw’s TPM system). 
 
In order to implement these features Moher used a “continuous execution” 
technique so that whilst the program is being interpreted the state transitions 
are recorded in a process history database. This database is a shared resource 
between the interpreter and the interface.  As the interface has access to all 
state transitions the user can identify any that may be of interest. Control over 
the display’s apparent speed and direction during execution is not direct 
control over the program, but, over the accessing of that program’s process 
history database. 
 
When a view is modified the PROVIDE environment disposes of its future 
pre-computed data from the database and starts again from the current frame. 
As a result, although the term “process history database” may imply that the 
program’s complete history could be viewed using any view, in practice only 
the history of each view is stored. Hence, visualizations of the program using 
a view not displayed at the original time of execution are not supported.  
 
PROVIDE effectively demonstrated the principles behind Moher’s approach 
to open access debugging. The major contribution made by PROVIDE is the 
design of a system capable of this level of user control in a practical 
environment. 
 
2.3.2. Z Step ‘94 
 
Z Step ‘94 is a program debugging environment developed by Henry 
Lieberman  and Christopher Fry at MIT’s Media Lab (Lieberman & Fry, 1995). 
This environment supports a “20-20 hindsight” view of debugging, in that it 
enables the Programmer to go back in execution-time and re-examine the 
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execution at varying levels of detail. A complete, incrementally generated 
history of a program’s execution and its output is maintained by Z Step ‘94. 
 

 
 
Figure 6. A screen view of Z Step ‘94 in which an alpha-beta tree drawing program is being 
debugged. There are five main components to the Z Step’94 environment; the bi-directional 
“video-recorder” control bar (mid-left), the “cruise control” panel (top-left), the code view 
(main window, centre screen), the “floating value window” (mid-right), and finally the 
(graphical) execution view (bottom-right). This figure was taken from (Lieberman & Fry, 
1995). 
 
A “video recorder” metaphor is used to create the control panel of a bi-
directional stepper (figure 6). The upper section of the control panel enables a 
programmer to step through the execution expression-by-expression. The 
graphical stepper in the lower section enables the programmer to step 
through the graphical changes in the program’s output. Lieberman and Fry 
reason that as a program’s behaviour is generally considered by the 
Programmer in terms of the graphical output frames, the graphical stepper is, 
in effect, providing a stepper for controlling the behaviour of the program  
 

Go to end of program

Show value of expression, without stopping

Single step

Single step backwards

Back up from value to expression

Go to beginning of program

Single step "graphically"

Single step backwards "graphically"
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Figure 7. An illustration of the bi-directional “video recorder” control panel used in Z Step ‘94 
(figure taken from (Lieberman & Fry, 1995)). 
 
A “cruise control” panel is also available with which the programmer can set 
the execution speed of the program in either the forward or backward 
directions (figure 8). The cruise control window enables a programmer to 
click on either Backward, Pause, or, Forward buttons, with the distance from 
the middle of the pause button being used to define the speed of execution in 
the corresponding direction. 
 

Backward Pause Forward

 
 
Figure 8. An illustration of the cruise control window used in Z Step ‘94 (figure taken from 
(Lieberman & Fry, 1995)). 
 
Another feature of the Z Step ‘94 environment is the “floating value 
window”. A problem with previous linear steppers and trace programs was 
that each expression was simply printed out as it was executed. This created 
the additional task of trying to match the printed expressions to the 
corresponding position in the code. As a method for supporting this matching 
some debugging systems provided a “follow the bouncing ball” interface 
which pointed to the current expression in the code before printing its value 
in another window. This however, although effective created a “ping-pong” 
effect as the programmer was forced to constantly switch their visual 
attention between the two windows of interest.  
 
Lieberman and Fry proposes the “floating value window” as a solution to 
these problems. Rather than separately pointing to an expression and 
displaying its value, the floating value window itself moves through the code, 
pointing to the current expression being evaluated and displaying any values 
it returns. The background of the floating window is colour coded; a light 
green background indicates the expression is about to be evaluated, a light 
blue background indicates a returned value, and a yellow background 
indicates an error has occurred and the error message is displayed within the 
window. 
 
As the floating window displays any error messages beside the expression 
that generated that error, the process of localisation is significantly reduced. 
Rather than disrupting program execution the Z Step ‘94 environment stops 
and enables the programmer to reverse over the events leading up to the 
error. Once a correction has been made the program can then be executed 
again. Note, this does not mean that the execution can continue where it left 
off, the entire program must be executed again for any corrections to be 
effective. 



The Visualization of Genetic Algorithms - Related Work  The Knowledge Media Institute 
 
 

 
 
 
 

page 18. 
 

 
Four additional feature settings are discussed by Lieberman and Fry to 
support the instrumentation process. A “step to mouse position” mode 
enables the programmer to select an expression in the code and the stepper 
will go either forward or backward to that expression’s evaluation. The 
“show value under mouse” mode is a continuous mode which displays the 
latest evaluations for any expression pointed at with the mouse-cursor. This 
mode does not step forward to evaluate any new expressions it will only 
display those values which it has already stored. 
 
A “current form history” feature can also be used so that an expression’s 
previous values can be displayed in a separate form history window when 
selected by the programmer. Finally, the “values filter feature” supports the 
display of a selected condition expression’s previously satisfying values. By 
further selecting an individual value the stepper will step back to the 
corresponding evaluation. 
 
There is also support for correspondence between the views. As the stepper is 
used to step through the expressions, the execution view is updated to reflect 
the corresponding dynamic behaviour of the program. Furthermore, if the 
programmer selects a graphical object in the execution view the stepper 
positions the text view at the code expression responsible for that objects 
creation. 
 
The significant contribution of the Z Step ‘94 environment is its integration of 
reversibility, code animation, and correspondence between code expressions, 
values and graphical output. Further details on this system may be found on 
the World Wide Web, see http://lieber.www.media.mit.edu/people/lieber/ 
Lieberary/ZStep/ZStep.html 
 
2.3.3. TPM 
 
The Transparent Prolog Machine (TPM) is a visualization system capable of 
visualising any Prolog program (Eisenstadt & Brayshaw, 1987). TPM is a 
continuation of some of the work done on the Prolog Tracing Package (PTP) 
by Marc Eisenstadt in the early 1980’s (Eisenstadt, 1984).  
 
PTP uses a technique developed by Eisenstadt known as “retrospective 
zooming” (Eisenstadt, 1985). By storing all of a program’s trace details 
internally this technique enables the user to decide upon the current level of 
detail exposed, and therefore customise the trace to their debugging task. This 
technique is also supported in TPM by the provision of two alternative 
viewing structures known as coarse-grained and fine-grained views. 
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A common visual metaphor is used for both of these views, namely; the 
Prolog program’s “goal tree”. Each node on a goal tree represents a command 
in the Prolog program and each layer in the goal tree represents a layer in the 
program . In a coarse-grained view a goal’s type is indicated by the node’s 
shape, its status is indicated by the fill colour and node-outline (see table 1). 
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Node Feature     Goal Attribute 
 
Shape      Type 
 
 square      user-defined goal 
 circle      system primitive 
 triangle     compressed tree section 
 
Fill Colour & Outline    Status 
 
 white (or green)    successful goal 
 white (or green) with a    currently pending 
  thick node outline    goal 
 black (or red)     failed goal 
 grey scale (or pink)    an initially successful goal which 
        failed on backtracking. 
 
Table 1. A description of the  visual components of a long-grained view goal tree. 
 
A commonly cited fault of tree-based visualizations is their ability to 
effectively illustrate large programs. In the case of TPM this problem is 
avoided by the provision of a compression facility with which the user may 
compress irrelevant sections of the goal tree into single nodes. These 
compressed sections are then indicated by a triangular node in the goal tree 
(table 1). Compounded with the fact that TPM supports multiple views and 
view scrolling, this makes the problems associated with displaying huge goal 
trees virtually insignificant. An example of a coarse-grained view is given in 
figure 9. 
 

 
 
Figure 9. An example of a coarse-grained view used by TPM. 
 
The fine-grained view of the program’s goal tree provides a more detailed 
view of the goals. Each user-defined goal in the goal tree is replaced by a 
“Procedural Status Box” (see figure 10). This box illustrates the current status 
of each goal and its respective clauses. For both goals and clauses a tick is 
used to indicate success and a cross to indicate failure. In the case of system 
primitives a circle is used rather than a procedural status box. 
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2

goal status

clause counter

clause branch
clause status box

 
 
Figure 10. A Procedural Status Box. 
 
Each status box provides additional detail about the individual goals and 
their respective sub-goals (commonly referred to as “clauses”). A printed 
representation of each goal is presented along side each status box, this 
includes the current variable instantiations (enclosed in lozenges) and the 
passing of variables between goals (illustrated using arrows). These fine-
grained views are called AORTA diagrams, which stands for And/OR Trees-
Augmented. An example Prolog program and it’s corresponding AORTA 
diagram is given in figure 11. 

 
older(X, Y) :- 
 age(X, AgeOfX), 
 age(Y, AgeOfY), 
 AgeOfX > AgeOfY. 
 
age(john, 27). 
age(tom, 18). 
age(sue, 24). 
 
?- older(john, sue). 
yes 

a

age(X      , AgeOfX ) age(Y    , AgeOfY  )

1

1

older(john, sue)

AgeOfX   >  AgeOfY11

older(X      ,  Y  )

3

1 1
sue

1 1

age(sue ,   24         )

1
27 24

1
john

age(john  ,  27         )

b

c d e

f
g

h

i

 
Figure 11. An example Prolog program and its respective AORTA diagram, as used for 
displaying fine-grained views within TPM. The small letters in italics indicate the order in 
which the status symbols appeared. System primitives are displayed as circular nodes. 
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As previously noted a Prolog program’s trace details are stored internally by 
TPM this provides the data source for a replay panel. The replay panel within 
TPM can be used in order to control the current position within the trace 
history. In addition to the replay controls their are four additional command 
icons, these empower the user to; set pause ports (also known as breakpoints) 
for a node, refocus the display causing a selected node to be the top node in a 
new goal tree view, display the location of a goal in the source code, or, 
zoom-in to a fine-grained view of a selected node. The icons used in the 
replay panel are illustrated in figure 12. 
 

        
set pause ports  refocus         find procedure        zoom in on node 
 

      
   step    play  forward  to end step back  to start 
 
Figure 12. The command and control icons available within the TPM replay panel. 
 
The two most important features of TPM are its ability to support 
synchronised coarse-grained and fine-grained views, retrospective zooming, 
and user directed tracing. A screen shot is given in figure 13 in order to 
provide an impression of a typical TPM scenario.  
 
TPM is now a commercially available system and has been adopted by the 
Open University as an aid for teaching Prolog on their DM862 - Intensive 
Prolog course (details are available via the World Wide Web at 
http://kmi.open.ac.uk/courses/DM862.html). Mike Brayshaw has recently 
been working on a version of TPM suitable for a parallel version of Prolog 
known as Parlog. This system uses the same visual metaphors and replay 
panel as TPM but is extended to visualise the concurrent processes involved 
in parallel programming (see (Brayshaw, 1990)). 
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Figure 13. A screen shot taken from TPM version 1.11. 
 
2.3.4. TRI 
 
TRI stands for the Transparent Rule Interpreter (Domingue & Eisenstadt, 
1989) which was developed by John Domingue at The Open University as 
part of the KEATS project (Knowledge Engineer’s Assistant) (Motta, Rajan, & 
Eisenstadt, 1989). TRI is a maintenance tool designed for use on rule based 
programs written in OPS 5.  
 
In order to debug a rule based program the Programmer must understand 
not only the specific components of the program but also how those 
components are structured to form a Knowledge Base. Therefore, a course-
grained view is required in order to get an overall idea of the program’s 
structure, as well as a fine-grained view so that the Programmer can 
understand the specific program details (such as rule unification, instantiation 
and the working memory state).  
 
TRI supports the dual requirements of the debugging process by using a “rule 
graph” for coarse-grained viewing and “view frames” for fine-grained 
viewing. A rule graph provides an explicit representation of a program’s 
execution cycles (shown along the x-axis) and the associated rule actions 
taken (shown along the y-axis, see figure 14).  
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 1 2 3 4 5 

ruleA       

ruleB           

ruleC           
 
Figure 14. An example rule graph illustrating the execution of a set of three rules over five 
execution cycles. A plus sign indicates a rule fired. A triangle (not included in this graph) 
indicates that a rule fired and backward chaining occurred. A box indicates that a rule was 
considered but did not fire. 
 
The view frames provide more detailed views of the program’s history. Three 
different types of view frames have been developed; Three Way View 
Frames, Predicate Windows and Node Examination Frames. The view frames 
used are under the direct control of the user who can create, move and delete 
view frames at will. A high level of selectivity within these frames provides 
an easy and consistent method of interaction for viewing and manipulating 
rule components. 
 
Three Way View Frames provide an opportunity for the user to view either 
the rules, predicates or working memory components of their program. These 
can be viewed either individually or up to all three views may be displayed at 
the same time. TRI also offers support for carrying out operations on any item 
within a frame view such as: describing a working memory element; 
describing  a predicate, or; describing, viewing, or, editing a rule. 
 
Predicate Windows can be used to display the working memory elements 
associated with a selected predicate or set of predicates. A cycle number is 
displayed beside each element indicating the cycle during which that element 
was deposited in working memory. 
 
Node Examination Frames provide fine-grained views of the nodes in the rule 
graph and are intended to highlight why a rule didn’t fire during a particular 
cycle. A rule graph node is selected using the mouse in order to create a Node 
Examination Frame containing the corresponding rule’s definition and 
instantiations during the corresponding execution cycle (see figure 15). 
 
The rule instantiations in a Node Examination Frame can also be selected 
using the mouse in order that they may be further examined. Rule 
instantiations in which backward chaining occurred are visualised using 
proof trees, these trees are based on the coarse-grained views used in TPM 
(see section 2.3.3). An example of a close-up of a backward-chaining proof 
tree is shown in figure 16. 
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Figure 15. An example of a node examination frame from a route finding rulebase, the upper 
section displays the rule’s definition and the lower section its instantiations. The most recent 
instantiation of a rule is highlighted using italics. Instantiations shown in bold indicate that 
when the rule fired backward chaining occurred. This view would have been produced by 
selecting the rule graph node corresponding to the  add-city-to-route rule at cycle number 25. 
 

 
 
Figure 16. An example of a backward-chaining proof tree for an adjcities rule instantiation. 
 
The execution control mechanism used within TRI is also taken from 
Eisenstadt and Brayshaw’s TPM system. Using the replay panel a user can 
either; step forwards or backwards through the execution cycles, or, replay 
the program’s history. The replay panel used in TRI is shown in figure 17. 
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 to start step back forward play stop to end 
 
Figure 17. A representation of the replay panel used within TRI. Each control button’s action 
is explained in the added text. 
 
All of the views within TRI are synchronised and provide the user with both 
coarse-grained and fine-grained simultaneous views of their rule based 
programs. A screen shot containing examples of all of the views discussed is 
shown in figure 18. 
 

 
 
Figure 18. A screen shot of TRI, taken from (Domingue & Eisenstadt, 1989). 
 
2.3.5. VITAL 
 
The VITAL project was a four and a half year research and development 
project completed in April 1995. This was an ESPRIT II project that involved 
nine organisations in five different countries. Their aim was to provide both 
methodological and software support for the development of large, 
industrial, embedded Knowledge-Based System applications (Domingue, 
Motta, & Watt, 1993).  
 
Software visualization was seen as an opportunity to enhance the users’ 
control of the individual tools within the VITAL Workbench, in order to 
support this a separate visualization framework and software library, called 
Viz, was created (Domingue, Price, & Eisenstadt, 1992). 
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Viz enables the user (i.e. KBS developer) to define and construct 
visualizations of their systems using a very high level programming 
language. A program’s execution data is stored in a history database which is 
used as the basis for  creating different views of that program’s execution. 
These views are then made available to the user, who can pick and choose 
which views they wish to see.  
 
To orchestrate this Viz uses a story-telling metaphor in which the program’s   
elements (i.e. functions, data structures, lines of code, etc.) can be referred to 
as “players”. The players are identified, either manually by the user 
annotating the code selecting elements of interest, or, automatically by the 
program compiler. The program’s execution is then stored in the history 
database as a series of “history events” (i.e. events that happen to, or are 
caused by, the players). Hence each player’s name and state details are stored 
every time there is an event involving that player. An architecture diagram 
showing the different sub-components of Viz is given in figure 19. 
 

 
 
Figure 19. The architecture of Viz, taken from (Domingue, Eisenstadt, & Price, 1994), page 9. 
 
There are four main components to Viz, the; “History”, “Views”, “Mappings” 
and “Navigators” components.  The History component holds a record of all 
key events that occur over the duration of the program’s execution. The 
Views component provides the styles in which a particular set of players, 
states, or, events can be presented. The Mappings are the encodings used to 
present the players’ state changes, either graphically, or, aurally within each 
view. Finally, the Navigators are the tools or techniques used to interact with 
the user. They allow the user to traverse a view, move between multiple 
views, change scale, compress or expand objects, and move forward or 
backward in time through the programs execution. 
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Figure 20. A screen snapshot of an example Viz visualization containing a TRI rule graph. A 
detailed description of the TRI rule graph may be found in the previous section (2.3.4). This 
view was taken from (Domingue, et al., 1993), page 14. 
 
An example Viz visualization may help illustrate how these components are 
used in practice. The previous section (2.3.4) examined the development of 
the Transparent Rule Interpreter, a KBS maintenance and debugging tool. 
Figure 20 shows a screen view of a TRI rule graph created using Viz. A rule 
graph is a visualization of the execution of a set of rules over a series of 
execution cycles. The players, their possible states, program events, mappings 
and view details are summarised in table 2.  
 

 Viz Definition 
Players rule, rule instantiation; the rule player is composed of rule instantiation 

players  
States failed to match working memory; applies only to rule players 

matched against working memory; applies only to rule players 
fired; applies to rule and rule instantiation players 
fired and invoked the backward chainer; applies to rule and rule 
instantiation players 

Events matching against working memory; 
firing; 
invoking the backward chainer 

Mappings failed to match working memory ->  

matched against working memory ->  
fired ->  

invoking the backward chainer ->  
Views (in 
decreasing 
order of 
granularity) 

table: current state; in a table based view display the rules current state 
text: rule’s instantiation states; in a text based view show the rules 
instantiations states 

 
Table 2. A summary of the Viz definition used to create the TRI rule graph shown in figure 20 
above. This table was also taken from (Domingue, et al., 1993), page 14. 
 
The VITAL project was unique in that it represented an international effort to 
formulate a design, development and validation methodology for KBS 
applications. The Viz visualization framework and software library is capable 
of producing not only program visualizations (i.e. program data and code 
visualizations) but also algorithm visualizations.  
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Figure 21. An illustration of the software visualization support provided by VITAL. This figure was 
taken from (Domingue, 1995), page 8. 
 
The extent to which the Viz framework and library is used within the VITAL 
project is illustrated in figure 21. The Problem Solving Architecture and Code 
Visualizations are examples of program visualizations, they closely illustrate 
the actions of the code and states of the data being manipulated by the KBS. 
The Domain and Expert Scripted Visualizations are similar to algorithm 
visualizations where abstract representations are used to illustrate the KBS’s 
operations. 
 
For those interested in finding out more about the Viz framework a world 
wide web page maintained by John Domingue is available at The Open 
University, see http://kmi.open.ac.uk/~john/viz/viz.html. Further details 
on the VITAL Workbench are also available from The Open University world 
wide web server, see http://kmi.open.ac.uk/~john/vital/vital.html . 
 



The Visualization of Genetic Algorithms - Related Work  The Knowledge Media Institute 
 
 

 
 
 
 

page 30. 
 

2.4. Algorithm Visualization 
 
As noted previously in section 4 algorithm visualizations monitor the 
fundamental operations of an algorithm. These operations cannot be deduced 
for an arbitrary algorithm automatically, but must be identified by someone 
who has knowledge of that particular algorithm. The following sub-sections 
present six algorithm visualization systems and discusses their respective 
merits. The last two of these six systems are specifically aimed at providing 
support for parallel programming.  This is inherently more complex than 
animating a serial program because of the non-deterministic nature of parallel 
programs. 
 
2.4.1. BALSA 
 
The BALSA environment (Brown ALgorithm Simulator and Animator) 
supports a high-level user interface that allows users to interact with the 
dynamically changing graphical representations of their programs (Brown & 
Sedgewick, 1985). The use of colour and sound is introduced to algorithm 
animation within this environment, although its use is not extensive an 
acknowledgement is deserved. BALSA interaction is based around four 
different user types; the Algorithm Designer, the Animator, the Scriptwriter 
and finally, the End User. 
 
The Algorithm Designer provides the programs to be animated, he or she 
identifies any “interesting events” which need to be visualised, and contribute 
to the design of the graphical representations used. The Animator’s task is 
then to implement the views that make up the graphical presentations. The 
Scriptwriter is the person who constructs the scripts for the animation i.e. 
what information is shown to the user and when. Finally the End User makes 
use of these scripts and views the dynamic graphical representations of the 
algorithms.  
 
The interaction style for an End User is referred to as a “set-up and run” cycle 
(Brown, 1988). In the set-up phase the End User arranges the display layout, 
the algorithms they wish to view, and the parameters they want to associate 
with each algorithm, including its input generator and output views (figure 
22). Then once set-up the End User runs the algorithm and observes the 
results (figure 23).  
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Figure 22. A pair of screen shots depicting the set-up phase of a BALSA session for a number 
sorting algorithm. The first screen view illustrates the display layout selection dialogue in the 
centre of the screen. The second screen view illustrates the parameter selection dialogue. In 
this particular example the user may select the initial organisation of the numbers (currently 
set to a random ordering), the number of  numbers to be sorted and, the random number 
generator’s initial seed value. 
 

 
 
Figure 23. A screen shot depicting the run phase of a BALSA session for a number sorting 
algorithm. The numbers are represented by vertical columns, the size of each column 
represents the size of its associated number. As the numbers are sorted by the algorithm the 
columns move into place.  
 
The control method for program execution is taken from Mac Pascal 
terminology. The End User can control the forward execution of a program 
by selecting one of five control commands shown in table 3. 
 
Command      Action 
 
Go       stop at the next stoppoint 
GoGo       pause at the next stoppoint 
Step       stop at the next steppoint 
StepStep      pause at the next steppoint 
Reset       reset the program 
 
Table 3. The control commands available within the BALSA algorithm animation system, 
taken from (Brown, 1987), page 65. The term stop point is used to refer to any breakpoints 
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inserted in the program and the term steppoint is used to indicate the intermediate step 
positions in the code i.e. just after every command. 
 
The End User can also edit the viewing position for each view. By selecting an 
individual view the user will display that view’s control bars with which they 
can manipulate their viewing position. The End User can either pan vertically 
(using the right hand scroll bar), pan horizontally (using the scroll bar across 
the bottom of the view) or magnify their viewing position (using the left hand 
scroll bar). 
 
For anyone interested in finding out more about BALSA there is a  demo 
version for the Macintosh available via anonymous-ftp from 
ftp.dec.com/pub/DEC/macbalsa-demo.sit.hqx.Z and a source code version 
available from ftp.dec.com/pub/DEC/macbalsa-source.sit.hqx.Z. The 
MacBALSA  user guide can also be found in ftp.dec.com/pub/DEC/ under 
the file name macbalsa-userguide.ps.Z . 
 
2.4.2. TANGO 
 
The TANGO algorithm animation system (Transition based ANimation 
GeneratiOn) was the resulting implementation of a framework devised by 
John Stasko for describing, specifying, analysing and formalising the elements 
involved in animating algorithms (Stasko, 1989). The framework contains 
three primary components; the Algorithm, Mapping and Animation 
Components (figure 24).  
 

Algorithm Mapping Animation

x = 10; 
if (y == 12) 
     z = 2.3; 
for (i=1; 1<=10;  ++i) 
     a[1] = 0.0;

 
 
Figure 24. John Stasko’s algorithm animation framework as used in TANGO (figure taken 
from (Stasko, 1989), page 34). 
 
The Algorithm Component adopts an event driven approach in which any 
events important to the algorithm’s semantics are identified by the Algorithm 
Designer. These events are referred to as “algorithm operators” and are used 
to model procedure calls mapping the algorithm to the animation, these are 
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then used to create the animation control file which constitutes the Mapping 
Component of the framework.   
 
The Animation Component contains the graphical objects that will change 
location, size and colour throughout the frames of an animation and the 
operations that control the animation. This approach to generating 
animations is referred to as the “Path Transition Paradigm” (Stasko, 1990). 
Four abstract data types are used within the Path Transition Paradigm; 
images, locations, transitions and paths.  
 
Images are either Primary Images such as lines, rectangles, circles and text, or  
Composite Images which are collections of primary images with specified 
geometric relationships. Locations are simply positions within the animation 
co-ordinate system, identified by an (x,y) co-ordinate pair. The Path is an 
ordered sequence of (x,y) co-ordinate pairs where each pair designates a 
relative offset from the previous position, and a relative time component used 
to control the smoothness of the animation. Finally the Transition component 
provides the animation with actions to modify the attributes of the image. 
Three action types are available; move, visibility and fill, these can also be 
used to form synchronous group transitions. A screen example of a TANGO 
animation is given in figure 25. 
 

 
 
Figure 25. A TANGO animation of a first-fit binpacking algorithm. The elements are inserted 
into the rectangle and tried against each column position until a large enough free-space is 
found to house them. The control bar shown at the bottom of the figure allows the user to pan 
around the view, zoom in and out, switch the debugger on/off, alter the refresh rate, and 
close the view. 
 
Within TANGO the Algorithm Designer can identify the “algorithm 
operators” and generate the corresponding animation control file using either 
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a standard text editor or the Annotation Editor available within Steven Reiss’s 
FIELD programming environment (Stasko, 1989). The advantage of using the 
Annotation Editor being that the control file can be edited dynamically 
without having to recompile.  
 
An additional tool available within the TANGO system is DANCE 
(Demonstration ANimation CrEation), a demonstrational tool for defining the 
actions to occur in the animation scenes. This promotes ease-of-design and 
rapid protoyping, hence increasing design experimentation. The graphical 
editor allows designers to create and manipulate instances of the four data 
types available within the Path Transition Paradigm to build up sections of 
the animation referred to as “scenes”. Once created a scene can then be 
automatically converted into animation code. An example screen shot is given 
in figure 26, showing a typical DANCE scenario. 
 

 
 
Figure 26. An example of the DANCE algorithm demonstration environment being used to 
create a new animation scene. 
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2.4.3. ZEUS 
 
Marc Brown’s second algorithm animation system, ZEUS, was designed to 
provide support for both algorithm animation and multi-view editing. The 
use of annotations to indicate “interesting events” in an algorithm is still 
used, however, added features include the use of objects, strong-typing, 
parallelism and the graphical development of views (Brown, 1991). The use of 
objects encourages the reuse of code and facilitates the construction of 
composite views. The introduction of a graphical editor aids the construction 
of new view components and the adoption of strong-typing provides an 
opportunity for generating automatic visualizations. A screen shot taken from 
a ZEUS binpacking animation is given in figure 27. 
 

 
 
Figure 27. A screen shot taken from a ZEUS binpacking algorithm animation. 
 
Initially the user is presented with a control panel through which they may 
configure the system and select the appropriate interpreter settings for their 
task (see top right-hand quarter of figure 27). The configuration facilities 
allow the user to select which algorithm to run, which views to use, and the 
data to give the selected algorithm. The interpreter settings allow the starting, 
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stopping and single stepping of an algorithm, and provide some control over 
the algorithm’s speed of execution. The configuration facilities also permit the 
user to write a snapshot of the state of the system to a file and restore the 
system from a previously stored file.  
 
Scripts were not included in the ZEUS system as, unlike BALSA, it was never 
intended for use as an educational aid, but, as a software engineering tool. 
Some utility views are generated automatically though from the list of 
“interesting events”. For example a “Transcript View” displays each event as 
a symbolic-expression as it is generated, the control panel also displays a view 
of the events as a set of selectable buttons with the appropriate widgets for 
specifying each parameter. These utility views enable the design and 
debugging of new views even without the underlying algorithms. 
 
Multi-view editing is supported by the inclusion of the “FormsEdit” editing 
tool. FormsEdit is a tool developed as part of the FormsVBT User Interface 
Development Environment (Avrahami, Brooks, & Brown, 1989). FormsVBT 
was developed within DEC to support a two-view approach to constructing 
user interfaces from an extensive library of interactor objects. An Interface 
Designer using FormsVBT can either create an interface by direct 
programming using the FormsVBT language, or, interactively by using the 
FormsVBT editor; “FormsEdit” (as is the case with ZEUS).  
 
Forms Edit provides three simultaneous views for the interface designer; a 
Text View, a Graphical View and a Results View. The Text View incorporates 
a conventional text editor with which the designer can edit the FormsVBT 
syntax code, this takes the form of symbolic expressions such as; 
 
(Border (PenSize 4) (PenPat “Grey”) 
 (Border (PenSize 8) (PenPat “White”) 
  (VBox (Width 200) 
   (HBox Fill “*General Options*” Fill Fill) 
   (HBox “Mail Check: “ Fill (Numeric %mailInterval)) 
   (HBox “News Check: “ Fill (Numeric %newsInterval))))) 
 
Figure 28. An example of FormsVBT syntax which produces a *General Options* dialogue 
box. 
 
The Graphical View not only displays a graphical representation of the 
interface but also supports graphical editing (see figure 31). Both the text and 
graphical editors use a shared dataspace for storing the interface design. That 
dataspace takes the form of a parse tree. Each node in the parse tree holds an 
element of FormsVBT syntax, the tree is organised in order to reflect the 
hierarchical structure of the code. Figure 29 illustrates a section of the parse 
tree representation for the code given in figure 28. 
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Figure 29. The parse tree representation of the example program given in figure s, only the 
first four layers of the tree are illustrated here.  
 
The third and final view within FormsEdit is the Results View which 
produces a fully interactive interface model (see figure 31). Any editing 
carried out within either of the editors is relayed back to the parse tree and 
once the tree has been updated the changes are then sent to update all of the 
views. An architecture diagram showing the structure of the FormsVBT 
system is given in figure 30. 
 

Result 
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Graphics 
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update
edit

update

 
 
Figure 30. The structure of FormsEdit. The shared parse tree data-space has two-way 
communication links with the two editing views and a single one-way updating link with the  
results view. Any external text editor can also be used to edit the Text View Module. 
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Figure 31. An example screen shot taken from Zeus which illustrates the use of multi-view 
editing with the FormsEdit editor. 
 
Although Marc Brown’s work on the BALSA system did introduce the use of 
sound and colour to algorithm animation, it is the ZEUS system which further 
explores the use of these two additional dimensions (Brown & Hershberger, 
1992). Brown and Hershberger refer to the use of sound in visualization as 
“auralization”. Sound has been used in a series of sorting algorithm ZEUS 
animations in order to; reinforce the visuals, convey patterns in the data, 
replace (some) visuals and for the signalling of exceptional conditions. These 
animations are based on a musical score metaphor in which the sorting 
operations are represented by notes and each pass through the algorithm by a 
bar line. Figure 32 shows one example in which the musical score is presented 
visually as well as aurally. 
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Figure 32 The visual component from a ZEUS “auralization” of an insertion sort algorithm 
running on a 20 element list. Each bar line indicates the completion of one pass through the 
array (figure taken from (Brown & Hershberger, 1992), page 60). 
 
The ZEUS system also extends the use of colour from illustrating the state of 
data structures and highlighting points of interest to emphasising patterns 
within the data, illustrating an algorithms history, and the tying of views 
together. The extension of colour usage within this system is based on the 
principles of graphic design although the design issues involved are beyond 
the scope of this review it is their application which is the foundation for 
effective colour usage (see (Tufte, 1990) or (Bertin, 1983)).  
 
2.4.4. ZEUS-3D 
 
In as extension to the ZEUS system Brown and Najork (Brown & Najork, 
1993) examined the use of three dimensional visualization in order to;  
represent additional information geometrically, integrate two normally two-
dimensional views, and, for the representation of time within what was 
originally a two dimensional view. 
 
The addition of a high level object oriented graphics library on top of the 3D 
graphics extension to X Windows provided the basis for extending ZEUS into 
three spatial dimensions. The resulting system, ZEUS-3D, provides a platform 
for presenting 3D perspective visualizations along with support for the 
rotation of a selected view about any of the three axes (x, y or, z). 
 
Two examples of ZEUS-3D animations are illustrated below, figure 33 shows 
three tree-based views of a heapsort visualization and figure 34 shows three 
bar-chart based views of an insertion sort visualization. The three views of 
each system are intended to communicate the use of the 3D viewing 
perspective.  
 
Figure 33 is an example of the use of the third spatial dimension to integrate 
two normally two-dimensional views; the tree-based view shown in the first 
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view, and the bar-chart view shown in the central view. A tree-based view 
places the numbers to be sorted on the tree nodes in the same order as their 
position in the heap then, as the heap becomes sorted, the larger numbers 
(indicated as brighter nodes) work their way toward the top of the tree. The 
second way of representing this type of sort algorithm is to use a colour bar-
chart, in this case the set of numbers are illustrated as a set of horizontal bars. 
Each bar’s position is used to indicate the respective number’s position in the 
set, the length and colour of each bar is used to indicate the number’s 
magnitude, as the numbers are then sorted the bars are rearranged. In order 
to integrate these two views Brown and Najork used the z-dimension to 
indicate the magnitude of each number in the tree-view illustrated in the x-y 
dimensions.  
 

 
 
Figure 33. A series of images taken from a ZEUS-3D animation of a heapsort algorithm. A tree 
representation is used to illustrate the heapsort algorithm with each node’s colour and size 
(i.e. length in the Z dimension) indicating the magnitude of each element in an array.  
 
Figure 34 on the other hand uses the third spatial dimension for the 
representation of time. The view used in this example is based on a coloured 
bar chart that indicates each number as a bar, with the number’s magnitude 
being illustrated using both the bar height and colour. As the numbers are 
sorted the bars are rearranged to form a wedge shaped spectrum. The third 
spatial dimension (z) is used here to represent time. By reducing the bar chart 
to a flat strip of what are referred to as paint-chips Brown and Najork place 
each of the previous passes through the algorithm side by side along the z-
axis. Hence it is possible to trace a number’s movements throughout the 
execution of the algorithm by watching how that number’s coloured paint-
chip changes position as it is plotted along the z-axis. 
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Figure 34. A series of images taken from a ZEUS-3D animation of an insertion sort. This time 
the elements are represented by adjacent sticks whose colour and size (i.e. height in the Y 
dimension) are again used to indicate the element’s values, however, in this view the Z 
dimension is used to indicate the algorithms history i.e. previous element positions. In order 
to provide a clear view of the current array all previous versions are flattened and shown as 
“paint chips”. 
 
These and other examples of the animation work done at DEC can be found 
on the World Wide Web at http://www.research.digital.com/SRC/zeus/ 
home.html. 
 
2.4.5. PAVANE 
 
The PAVANE visualization system was developed by Gruia-Catalin Roman, 
Kenneth C. Cox, Donald Wilcox and Jerome Y. Plun at Washington 
University, St. Louis (Roman, Cox, Wilcox, & Plun, 1992). The PAVANE 
system was designed in order to help users to understand programs 
consisting of large numbers of concurrent processes. Roman, Cox et al. argue 
that the most common approach to visualization, that of using program calls 
to invoke visualization mechanisms each time changes occur, is unsuitable for 
concurrent processes. They reason that the parallel nature of the concurrent 
processes can not be accurately represented in this sequential fashion. 
 
In order to appropriately visualise concurrent processes they propose a 
declarative approach to visualization. Rather than seeing visualization 
mechanisms as being called by a control structure each time a change occurs 
they propose that visualization should be considered as a mapping between 
computational states and graphical object states rendered by a display device. 
For this purpose Roman et al. propose the use of formal declarative 
mappings. 
 
In their system a shared dataspace is used to store all the program state 
values as content addressable cells. This dataspace is partitioned into three 
subsets: the tuple-space is a finite set of data tuples representing passive data, 
the transaction-space is a set of finite transactions representing the program’s 
actions, and finally the synchrony relation  is a mechanism for specifying that 
selected actions are to be executed either synchronously or asynchronously.  
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Visualizations are specified by defining a mapping from a program state to an 
image state. Three types of mappings are supported: 

 
Simple Mapping - a functions which given an input space produces an 
output space. 
 
History-Sensitive Mapping - a function which given a primary input 
space  consults the previous version of its output space and produces 
an output space, enabling the incorporation of historical data. 
 
Differential Mapping - a function which given a primary input space 
consults the previous input space and produces an output space, 
enabling the detection of any changes. 

 
The mapping between a program state and its corresponding image state is 
divided into four sub-mappings; a proof mapping, an object mapping, an 
animation mapping and a frame generation mapping (see figure 35). The 
proof mapping is a history-sensitive mapping which removes any irrelevant 
details from the program states, the result is then held in the proof space. 
Object mappings are also history-sensitive, they map the proof space states into 
the object space, this is a 3D world of geometric objects. The animation 
mapping is a differential mapping; it detects visual events, i.e. changes in the 
object space, and translates them into sequences of image changes in the 
animation space. The final component is the frame generation mapping, this 
is a simple mapping which interprets the image changes in the animation 
space and produces a corresponding set of animation frames. The number of 
frames produced is constrained by the time available  between image 
changes. 
 

State space Proof space Object space Animation 
space Image

User 
interactions

Proof 
mapping

Object 
mapping

Animation 
mapping

Frame 
generation

Previous 
instance

Previous 
instance

 
 
Figure 35. Visualization mapping decomposition in the PAVANE  system. This diagram is 
taken from (Roman, et al., 1992), page 169. 
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The resulting frame animation system produces concurrent 3D colour 
animations of an underlying parallel program. An example visualization of a 
shortest-path  algorithm is shown in figure 36. A better impression of this 
system may be gained by examining its World Wide Web home page at 
http://swarm.cs.wustl.edu/pavane.html and running a demo. 
 

 
 
Figure 36. A three-dimensional animation of a shortest-path algorithm showing computed 
distances and paths from a particular node (marked with circles). The algorithm is operating 
on the depicted planar graph. Currently-known paths and distances are shown by the lines 
and spheres above the graph. Colours represent the status of a node in the computation, 
either scanned (green/light grey) or unscanned (red/dark grey).  This diagram was taken 
from ((Price, et al., 1993), page 233). 
 
2.4.6. PARADE 
 
PARADE is the PARallel program Animation Development Environment, 
currently under development by John Stasko and his colleagues at the 
Georgia Institute of Technology (Stasko, 1995). The focus of this work is to use 
“application-specific” visualization to assist the debugging and correctness 
checking of parallel programs. Application-specific program views are 
defined as views that illustrate the program’s semantics, its fundamental 
methodologies and the inherent application domain (Stasko, 1995).  
 
PARADE is made up of three components (figure 37). The first component, 
the “Parallel Program” component, extracts the necessary program 
information on which to base the views. The second component, referred to as 
the “Animation Choreographer”, is responsible for the gathering of the 
program information and its subsequent organisation into a preferred 
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structure identified by the user (via the Visualization Paradigm). And finally, 
the third component is the “Visualization Paradigm”. This presents the 
choreographed program details in a smooth animated form and passes the 
user’s actions back to the Animation Choreographer. 
 

Parallel 
Program

or all () 
{ 
 x = 13; 
} 
 
fct2();

Animation 
Choreographer

Visualisation 
Paradigm - "POLKA"

Event Records Scene Calls

Interactions

 
 

Figure 37. An overview of PARADE highlighting its three major components; the parallel 
program component extracts the information required for producing the visualizations, the 
Animation Choreographer gathers the program information from the Parallel Program 
component and organises it into a preferred format, and finally, the Visualization Paradigm 
takes the choreographed program details and presents them in an apparently continuous 
smooth animation to the user.  Any user interaction is passed to the Animation 
Choreographer by the Visualization Paradigm where it is acted upon. This figure is taken 
from (Stasko & Kraemer, 1992), page 4.  
 
As previously noted the first component extracts the necessary program 
information to build the visualizations (labelled in the above figure as the 
Parallel Program component). In order to generate the program information 
for these visualizations, the PARADE user can utilise any one of three 
different software instrumentation techniques, namely; via hand annotation 
of the program code, by overriding the standard communication library, or, 
through the modification of the resident parallel communication library.  
 
Although annotating the source code with output statements is time 
consuming and error-prone this is the most general approach of the three, in 
that the user has a completely free rein over what is shown and the amount of 
detail presented. The overriding of the standard communication library in 
PARADE is done by the replacement of the C library called “pthreads”, these 
include the basic process control and communication calls, with “gthreads”. 
The gthread library contains a set of simple macros that firstly writes a trace 
event of each process control or communication call to a trace file before 
carrying out the associated pthread call. Although this is less general in that it 
can only produce process control and communication calls it is a lot less time 
consuming and a lot less Programmer intensive.  
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The final method for extracting the necessary program information is to 
actually modify the resident parallel communication library. “Conch” is an 
experimental heterogeneous network computing system that has been used 
for this purpose. It contains all the communication primitives used by system 
with modifications to activate and deactivate the trace facility. Although the 
replacement of the computer systems parallel communication library may 
seem rather extreme it results in an almost seamless program-data extraction 
technique. Once the “Conch” system is in place the user is no longer required 
to perform any programming tasks the visualization data is automatically 
recorded during execution. All of the above information extraction techniques 
time stamp each trace element. This is to ensure that each element will be 
presented in the program animation at its relevant time position.  
 
The second component of PARADE is the “Animation Choreographer”. This 
takes the program information in the trace file and maps it to any associated 
animations. The Animation Choreographer  uses the time stamped data of 
each element to present a directed acyclic graph, the graph’s nodes represent 
the individual program events indicated by the trace elements. 
 
An “Ordering” menu is used to select the temporal ordering applied to the 
animation. Currently four options are available the graph can be ordered by: 
the time stamped data (“Timestamp”), serially by the causal order (“Serial”), 
as the events occur in global time but with any problems in logical or causal 
ordering being resolved (“Minimal distortion”), or, as the events would occur 
to generate maximum concurrency under their causal ordering (“Maximum 
concurrency”). The Animation Choreographer then allows the user to 
manipulate the graph until an acceptable ordering is found. A “run” option is 
available to start the animation using the chosen temporal ordering.  
 
POLKA (Parallel Object-orientated Low Key Animation) is the name given to 
the third and final component of PARADE. This is the Visualization Paradigm 
developed specifically for PARADE (Stasko & Kraemer, 1992). POLKA is an 
object-orientated system for the creation of visualizations and animations 
which includes both high-level graphical-object, and motion primitives. 
POLKA is implemented in C++ and is available with either 2D graphical 
support (on the X Windows system) or 3D  graphical support (on top of  
Silicon Graphics’ GL system). 
 
The POLKA animation methodology is a combination of principles from the 
Path-Transition Paradigm, (previously developed by Stasko for algorithm 
animation, see section 2.4.2), and more traditional production 3D animation 
systems. Figure 38 illustrates the hierarchy of a POLKA animation. An 
animation is made up of a series of Views with each view being made up of 
Locations, Actions and AnimObjects. 
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Figure 38. A hierarchy diagram illustrating the structure of a POLKA animation. The 
Animator module controls the smooth animation of all the Views by ensuring that each 
animation action is allocated a time-frame. This figure was taken from (Stasko & Kraemer, 
1992), page 5. 
 
An AnimObject is the base class for all graphical objects (either 2D or 3D), 
objects are created by the “Originate” method and deleted by the “Delete” 
method. Locations in POLKA can be used to reference and remember 
important positions for later use. They are real-valued (x, y) markers in the 
View co-ordinate system. Finally the Action class supports the simple 
movements or changes to be made to the AnimObjects. An Action object has a 
type such as  “MOVE”, “COLOR”, or “RESIZE” and a list of (x, y) offset pairs 
defining a two dimensional sequence in the View co-ordinate system.  
 
The most significant feature of the POLKA system is its support for 
concurrent animation that accurately illustrates parallel program 
concurrency. This is enforced by the programming of each AnimObject with 
Actions to occur at particular View frame times. The “Animate” method 
within the Animator class then checks all of the AnimObjects for each View 
and ensures that any Actions programmed to occur at the current frame time 
are executed and the appropriate “Update” and “Draw” methods invoked. 
 
POLKA maintains the simple modification of graphical objects along paths 
approach cultivated in Stasko’s previous Path-transition Paradigm, but adds 
the capability to program actions into objects at desired animation times. 
Although POLKA is only one part of the PARADE environment it is currently 
the most complete component, two screen images illustrating both 2D and 3D 
visualizations from POLKA are shown in figures 39 and 40, unfortunately no 
screen images are currently available to illustrate the other two components.  
 
John Stasko maintains a World Wide Web home page for the work done on 
this and other SV systems by members of the Graphics Visualization & 
Usability Center at the Georgia Institute of Technology, see 
http://www.cc.gatech.edu/gvu/softviz/SoftViz.html. 
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Figure 39. A screen shot taken from POLKA showing a 2D representation of a quicksort 
algorithm. The view on the left is a “blocks view” showing each element in an array as a block 
whose height indicates the element’s value, and horizontal position indicates its position in 
the array. The view on the right is a “chart view” in which the horizontal lines are used to 
represent the swapping of elements, the start and end points of these lines indicate the 
positions of the elements being swapped. Colour is used in both views to indicate the 
partitioning of the array. This and other images are available from the web site at the Georgia 
Institute of Technology (http://www.cc.gatech.edu/gvu/softviz/parviz/polkaanims.html). 
 

 
 
Figure 40. A POLKA 3D representation of a quicksort algorithm in which the smaller blue 
(dark) boxes to the right represent the values of the elements being sorted, and the 
multicoloured (greyscale) planes to the left provide an impression of the  history of the 
exchanges in the program. The corner positions of each history plane are defined by the 
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element’s blue block positions along a diagonal plane. This illustration is taken from (Stasko, 
1992), page 13. 
 
3. Conclusions 
 
Section one of this review introduced the author’s intention, to apply software 
visualization to support peoples use of genetic algorithms. It  also discussed 
what software visualization means to the author and why it is needed. This 
first section closed with a description of the structure chosen for the review 
and a brief overview of the systems included. 
 
The second section then detailed, what are considered by the author, to be the  
most significant features of each system. In this, the concluding section of this 
document, an attempt is made to draw from the systems described which 
features may be of importance for genetic algorithm visualization. The section 
opens with a brief summary of the systems reviewed along with their 
associated sources of reference. Some of the more important features are then 
discussed with respect to GA visualization. Finally the section closes with 
some examples of possible GA visualization views, illustrating a few of the 
possible uses of the highlighted software visualization features. 
 
3.1. Summary 
 
The following list provides a summary of the systems reviewed in the 
previous section. It is hoped that this may form a useful reference guide. Each 
system is listed with a brief synopsis of its key features, the references used in 
this review, and any known ftp or world wide web sites where further 
information may be found. 
 
3.1.1. Development Environments 
 
PECAN  - Supports the optional use of structured program command 

templates. 
- Provides concurrent graphical and text based views (a 
significant contribution at the time). 
 
(Reiss, 1985) 
 

GARDEN - Support for free-form conceptual design and development. 
- Object-orientated framework, multiwindow environment and 
environmental support database. 
 
(Reiss, 1987) 

 
FIELD - Integration framework for a variety of UNIX based tools. 
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- Support for automatic data structure visualization. 
 
(Reiss, 1990; Reiss & Cruz, 1994) 

 
3.1.2. Program Development 
 
TINKER - Lisp based programming by demonstration. 

- Example demonstrations are generalised to form functions. 
- Supports both top-down and bottom-up programming 
approaches. 
 
(Lieberman, 1981; Lieberman, 1993) 
 
http://lieber.www.media.mit.edu/people/lieber/Lieberary/Ti
nker/Tinker.html 

 
3.1.3. Program Development 
 
PROVIDE - Presents graphical views of a program’s process states that can 

be altered via direct manipulation. 
- Supports bi-directional stepping through a program’s 
execution. 
 
(Moher, 1988) 

 
Z Step ’94 - Supports the bi-directional stepping of code expressions and 

execution output. 
- Presents concurrent displays of the code expressions, their 
values, and associated graphical output. 
 
(Lieberman & Fry, 1995) 
 
http://lieber.www.media.mit.edu/people/lieber/Lieberary/Z
Step/ZStep.html 

 
TPM  - Automatic visualization of Prolog programs. 

- Supports bi-directional stepping through a program’s 
execution. 
- Provides views at two different levels of visual abstraction, 
both united by the common visual metaphor of a “goal tree”. 
 
(Brayshaw, 1990; Eisenstadt, 1984; Eisenstadt, 1985; Eisenstadt & 
Brayshaw, 1987) 
 
http://kmi.open.ac.uk/projects/projects.html#2.2 
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TRI - Rule based program visualization.  

- Supports bi-directional stepping through a program’s 
execution. 
- Presents a coarse-grained time specific view (i.e. a rule graph) 
along with several fine-grained rule specific views. 
 
(Domingue & Eisenstadt, 1989) 

 
VITAL - The VITAL Workbench provides methodological and software 

support for the design, development and validation of 
knowledge based systems. 
- Uses the Viz visualization framework and software library to 
produce code, design and domain based views. 
 
(Domingue, et al., 1994; Domingue, et al., 1992; Domingue, 1995; 
Domingue, et al., 1993) 
 
http://kmi.open.ac.uk/~john/vital/vital.html 
http://kmi.open.ac.uk/~john/viz/viz.html 

 
3.1.4. Algorithm Visualization 
 
BALSA - Allows users to interact with the dynamically changing 

graphical representations of their programs’ execution. 
- Intended for use mainly as an educational aid for the teaching 
of computer algorithms. 
 
(Brown, 1987; Brown, 1988; Brown & Sedgewick, 1985) 
 
ftp://ftp.dec.com/pub/DEC/macbalsa-demo.sit.hqx.Z 
ftp://ftp.dec.com/pub/DEC/macbalsa-source.sit.hqx.Z 
ftp://ftp.dec.com/pub/DEC/macbalsa-userguide.ps.Z 

 
TANGO - Uses the Path Transition Paradigm to produce smooth frame 

animations where an image is moved by small increments along 
a path in a succession of animation frames. 
 
(Stasko, 1989; Stasko, 1990) 
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ZEUS - Multiview editing provided via the FormsEdit tool which 
supplies a text editor, graphical editor and a resulting program 
output viewer. 
- The Zeus system examined the use of colour and sound as 
additional communication channels capable of delivering 
information not contained in the graphical or text based views.  
 
(Avrahami, et al., 1989; Brown, 1991; Brown & Hershberger, 
1992) 
 
http://www.research.digital.com/SRC/zeus/home.html 

 
ZEUS-3D - Basically ZEUS plus 3D perspective. Here the third spatial 

dimension is recommended as an aid to illustrating additional 
information, the previous states (i.e. history) of a two 
dimensional view, or, as an integration mechanism for two 
related two dimensional views. 
 
(Brown & Najork, 1993) 
 
http://www.research.digital.com/SRC/zeus/home.html 

 
PAVANE - Proposes the declarative approach to parallel program 

visualization. Where the views of a program are created 
through a series of formal declarative mappings. 
- Produces two or three dimensional, colour rendered, 
animations. 
 
(Roman, et al., 1992) 
 
http://swarm.cs.wustl.edu/pavane.html 

 
PARADE - Supports the production of application-specific parallel 

program animations. 
- Extends the Path-Transition-Paradigm to include the 
occurrence of concurrent operations. 
- Can produce either two or three dimensional colour 
animations. 

 
(Stasko, 1995; Stasko & Kraemer, 1992) 
 
http://www.cc.gatech.edu/gvu/softviz/SoftViz.html 
http://www.cc.gatech.edu/gvu/softviz/parviz/polkaanims.ht
ml 
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3.2 Discussion 
 
In the course of the above review it has became increasingly obvious that 
software visualization is much more than pretty-printing or fancy pictures. It 
is the principled application of techniques adopted from a variety of 
disciplines including graphic design, psychology, and animation. Perhaps one 
of the most influential factors for software visualization has been the rapid 
increase in computing power over the past two decades. This has nurtured 
the use of 2D and 3D graphical views, colour and sound, making software 
visualization a practical reality. 
 
The use of multiple, two and three dimensional colour views are common 
place in most of the currently available systems. The effective application of 
these features however can not be left to chance, but must be based on some 
idea of effective representation. Several of the systems’ authors cite the 
seminal works of Edward Tufte and Jacques Bertin who have written 
extensively on the principled application of graphic design techniques for 
representing information (Bertin, 1983; Bertin, 1987; Tufte, 1990).  
 
However as well as bring out the common place approaches to viewing 
information, the systems reviewed have illustrated many more novel 
approaches. The work done by Brown and Hershberger on the effective use of 
sound indicates the extent to which sound may be used (Brown & 
Hershberger, 1992). Although no evaluation work was done on their 
“auralizations”, the use of sound to reinforce the visual displays and signal 
exceptional conditions is now a standard feature of the majority of direct 
manipulation user interfaces. Whether audio can in fact be used to replace 
some of the visual images is unconfirmed. This would involve the user 
attending to both visual and audio messages concurrently. As these would be 
communicating different information this would effectively double the user’s 
cognitive load. 
 
The use of bi-directional control mechanisms to step through a programs 
execution is another interesting approach for supporting the user. The Open 
University’s TRI, TPM and Viz systems all support bi-directional stepping as 
does Steven Moher’s PROVIDE and Henry Lieberman’s ZStep’94 systems. 
This feature could be used within genetic algorithm visualization to support 
the users examination of an algorithm’s evolution. Providing the user can 
view the data produced after each pass through the algorithm (i.e. each 
“generation”), a bi-directional control mechanism could be introduced to 
navigate through the algorithms evolution. Furthermore, at any backtracked 
position in an algorithms evolutionary data set, the user could either step 
forward to the next generation in the stored data set, or, restart the algorithm 
again and let it re-evolve, quite possibly to a better solution. 
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This idea of evolutionary control through restarting an algorithm is even 
more intriguing given that if the user were allowed to control the algorithms 
parameters (as in the BALSA system) they could actually step back and forth 
re-starting an algorithm with differing parameters. Given time this process 
could be used to find the optimal set of problems for the attempted problem. 
 
The use of a pause and directional control mechanism also introduces the idea 
of version control. As the visualization system would be storing the 
algorithms output data set, a simple extension of this would be to maintain 
different versions of the GA’s evolution for different parameter settings. 
These could then be used either to illustrate the influence of the parameters 
over an algorithm, or to guide future efforts on similar problems. 
 
The effective use of multiple views is a non trivial problem. In systems like 
TRI and TPM there are specific fine-grained and coarse-grained views 
intended to support different components of the user’s task. The FIELD 
environment supports the integration of various Unix based programming 
tools, and the VITAL workbench supports the use of task-specific tool sets. 
All of these are tailored to the needs of the user and the requirements they 
have for each particular task. Similarly a GA visualization system must 
consider the tasks involved in applying GAs and support these accordingly.  
 
For example, a GA visualization system to be used as an educational aid to 
teach how GAs work, the views presented should illustrate the operations of 
the algorithm. Hence algorithm visualization should be used to visually 
present the generation, evaluation, selection and reproduction of the 
representative strings (i.e. “chromosomes”). This could easily involve a 
roulette wheel image as used by (Goldberg, 1989) to illustrate the selection 
procedure, or a cut and paste image to illustrate the crossover genetic 
operator. 
 
In order to illustrate an algorithm’s execution the views should reflect the 
data sets changes over successive generations i.e. it should present data 
visualizations. Finally for the process of programming GAs, like any 
programming task, the effective application of code visualization techniques 
may best support the user’s needs. 
 
Is the best solution therefore to develop a task specific visualization system? It 
is the author’s opinion that it is not. Like TRI, TPM, FIELD and the VITAL 
Workbench it is the views that are unique to the task, not the system. 
Provided a consistent framework can be made available within which a 
library of views can be used, there is no foreseeable reason why a 
visualization system cannot support all these tasks. Furthermore, providing 
the user interface is flexible enough to accommodate a wide range of 
experience in its users, the one visualization system could be used by the 
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same user as they become more familiar with GAs and progress from learning 
about GAs, to developing and applying GAs of their own. 
 
The idea of a software library containing different views is used in several of 
the above systems. A library of possible views gives the user the freedom to 
choose their preferred combinations of views. This includes the freedom to 
create duplicate views and uninformative views. However, the use of default 
combinations of views suited for particular tasks  enables the provision of 
recommended, complimentary view combinations (like those presented in the 
BALSA demo package). 
 
A library that cannot be extended however, is limited.  As new views are 
devised some simple means of extending the library becomes necessary. This 
may be done using a tailored high level command language, as is the case in 
Viz, TANGO and POLKA, or through the use of a graphical  editor, as is the 
case with the DANCE animation tool, and the FormsEdit editor used in 
ZEUS. 
 
As has been discussed in this section the key  features which seem most 
appropriate for the development of genetic algorithm visualizations are as 
follows:  
 

- The principled use of 2D, 3D and colour views.  
- The use of sound to illustrate additional information, indicate 
exceptional conditions and reinforce the visuals. 
- The provision of a bi-directional control mechanism for 
stepping through an algorithms evolution, with the added 
possibility of recording multiple evolutions. 
- The provision of an extendible view library with 
recommended task orientated view combinations. 

 
The following final sub-section, shows how some of these features could be 
presented in a series of design models. 
 
3.3. Design ideas 
 
This section examines some design ideas for the inclusion of the key features 
highlighted in the previous sub-section. 
 
3.3.1. Principled 2D, 3D and colour views 
 
As previously noted the design of the individual views is a crucial factor in 
how useful a visualization system will be (section 3.2).  It is therefore, 
essential that some effort is made to ensure the views used are as informative 
as possible. Design principles, such as those proposed by Edward Tufte and 
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Jacques Bertin, provide some guidance for this (Bertin, 1983; Bertin, 1987; 
Tufte, 1990). A complete description of such guidelines is beyond the scope of 
this review, therefore the reader is merely recommended these texts with the 
hope that they may be of help. 
 
3.3.2. The use of sound 
 
Sound could be used within a GA visualization system to indicate the 
algorithm’s operations. Unless the user is specifically interested in the 
individual chromosomes’ selection, reproduction and evaluation operations 
they may not be visually presented. However, sound could be used 
independently of the visual images to communicate these operations. This 
may be useful in illustrating the execution speed, the occurrence of 
crossovers, mutations, or other genetic operations, and the discovery of an 
acceptable solution.  
 
An possible method for this would be to use a clock metaphor. An hour-
chime could be used to indicate each pass through the algorithm, and a tick 
could be used to indicate each operation. As there are different types of 
operations within each algorithm (i.e. selection, crossover, mutation, etc.) a 
variation in pitch could be used to indicate each operation’s type, these could 
be further categorised with the use of distinctive chimes to indicate the 
beginning of each algorithm component. An alarm could be used to indicate 
the discovery of an optimal, or acceptable, solution. A simple example 
illustrating these ideas is given in table 4 below. 
 
 Algorithm Components    Audio signal 
 
 1. Start 
 2. Initial Population Creation   Chime once 
  2.1. generate random chromosome  tick 
  2.2. evaluate chromosome   tock 
 3. Population Reproduction   Chime twice 
  3.1. select two chromosomes   tick 
  3.2. crossover chromosomes   tack 
  3.3. evaluate chromosomes   tock 
 4. Is the optimal solution reached?  
   No - goto 3.   Hour-chime 
   Yes - Stop   Alarm buzz 
 
Table 4. An example clock based audio visualization suitable for indicating a simple genetic 
algorithm’s internal operations. 
 
The use of sound to indicate exceptional conditions and reinforce visual 
images should also be considered as additional techniques for improving a 
visualization system. No specific designs for reinforcing sounds are given 
here as their design is dependent on the visual images presented. One 
example of sound as an indicator of exceptional conditions has already been 
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given in the clock based audio visualization. There sound was used to 
indicate the discovery of an optimal solution. Sound benefits from the fact 
that it can be used as an attention grabbing form of communication and can 
therefore be used to draw attention to any important, or exceptional, events. 
 
3.3.3. A bi-directional control mechanism 
 
A genetic algorithm’s evolution is a strongly guided but essentially random-
based search. The initial population, the position of crossover points between 
mating chromosomes and the occurrence of mutation, are all random events. 
If two identical GAs were executed side by side there is no reason why they 
couldn’t evolve completely different solutions.  
 
Therefore, in the case of a controller used to step from one generation to the 
next the difference between stepping forward one generation in an 
algorithm’s trace data-set and executing the algorithm to generate the next 
generation must be made explicit. The following example design illustrates 
the use of separate control buttons for the execution (labelled “play”) and the 
stepping (labelled “step”) of a GA (see figure 41).  
 

BACKWARD PAUSE FORWARDPLAY
 

 
Figure 41. A Bi-directional control panel suitable for use within a genetic algorithm visualization 

system. 
 
The use of a single step stepper to navigate through an execution trace can be 
frustrating when the user wishes to step to the start, end or any specific 
position in between. Therefore, in order to step through a program at an 
appropriate rate additional buttons can be made available to rewind to the 
start, fast-forward to the end, or step N positions forward or backward 
(where N is a positive integer). A second example illustrating this is given in 
figure 42. 
 

PAUSE

PLAY

1 1

55

START END

 
 

Figure 42. A bi-directional control panel capable of multiple-step stepping. The user can edit the 
number of steps taken in the outer-middle two stepping buttons, which are currently set to 5 
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(generations). The outer-bottom two stepping buttons enable the user to go directly to the first 
generation i.e. the start, or the latest generation i.e. the end. 

 
These are two sample designs illustrating how a control panel may be used 
for navigation. Further extensions can be added to permit version control 
over stored execution traces. An example addition to the control panel shown 
in figure 42 is given in figure 43, below. Here the user can either select their 
data set from a previously loaded data library, or, record new data using their 
own algorithm. 
 

Data Library Data Set

TravellingSalesMan PMX+Mut.1

PAUSE

PLAY

1 1

55

START ENDRECORD

 
 
Figure 43. A bi-directional control panel and data selection dialogue. The user’s data library and data 

set are selected from a pull-down menu, new data library or data set labels can be typed directly into the 
Data Library and Data Set boxes, respectively. 

 
3.3.4 An extendible view library 
 
A view library would permit the user to select views suited to their particular 
task. The use of default task orientated view combinations may be one 
method of encouraging inexperienced users to use complimentary views, 
then when the user gains more experience they may create their own 
combinations based on their experiences. A design for a view selection and 
parameter allocation dialogue is given in figure 44. 
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View 
Library

View Contents: X Axis = Generation Number

Y Axis = Best Chromosome Fitness

Y Axis = Average Chromosome Fitness

Y Axis = Worst Chromosome Fitness

View  Label: 2D Fitness vsTi me Graph

View Type: View Parameters: Algorithm Parameters:

2D Graph

3D Graph

2D Scatter-plot

3D Scatter-plot

2D Histogram

3D Histogram

Pie Chart

Hinton Block Diagram

=

Chromosome Fitness

Population's Total Fitness

Average Chromosome Fitness

Best Chromosome Fitness

Worst Chromosome Fitness

Generation Number

Popualtion Size

Mutation Rate

X Axis

Y Axis

Colour

Z Axis

View  Type: 2D Graph

 
 

Figure 44. A view selection and parameter allocation dialogue suitable for use within a GA 
visualization system. The user can either select a view from the library using the pull-down menu on the 
View Label box, or type in a new label and then define it using the selection menus in the lower half of 
the dialogue. Each views type and contents are displayed in the upper half of the dialogue, below the 

View Label. 
 
As noted in the previous sub-section (3.2) a library should be extendible in 
order to allow the creation and application of new views. Selecting an 
appropriate method for view definition is a difficult task, visual languages 
can suffer from being too specific and as a result prevent the user from freely 
expressing their ideas, conversely command languages can be too much 
bother for non-programmers to use freely.  
 



The Visualization of Genetic Algorithms - Related Work  The Knowledge Media Institute 
 
 

 
 
 
 

page 59. 
 

A compromise to this problem may be to support both graphical and text 
editing (as is the case in ZEUS), or to use a visualization specific high-level 
language that reduces the amount of programming effort required (as in the 
case in Viz, TANGO, and PAVANE). Providing a standard protocol is used 
for the definition of each new view’s parameters, new views could be 
incorporated into the view library by simple cut and paste, or drag and drop 
operations. 
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