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Abstract

This paper introduces a Bayesian method for clustering dynamic pro-
cesses. The method models dynamics as Markov chains and then applies
an agglomerative clustering procedure to discover the most probable set of
clusters capturing different dynamics. To increase efficiency, the method
uses an entropy-based heuristic search strategy. An experiment suggests
that the method is very accurate when applied to artificial time series in
a broad range of conditions. When the method is applied to clustering
simulated military engagements and sensor data from mobile robots, it
produces clusters that are meaningful in the domains of application.
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Bayesian Clustering by Dynamics

1. Introduction

Suppose one has a set of univariate time series generated by one or more unknown processes
that have characteristic dynamics. Clustering by dynamics is the problem of grouping time
series into clusters so that the elements of each cluster have similar dynamics. For example,
if a batch of time series represents sensory experiences of a mobile robot, clustering by
dynamics might find clusters corresponding to abstractions of sensory inputs [15]. If a
batch contains a time series of sistolic and diastolic phases, clustering by dynamics might
find clusters corresponding to the pathologies of the heart. Sound patterns can be clustered
by dynamics, also, and this is one way to discover patterns corresponding to words in the
speech signal [8]. An open problem in unsupervised learning is to automatically construct
explanations of data [17]. Clustering by dynamics can reduce a large batch of time series
to a small number of clusters, where each cluster contains time series that have similar
dynamics, thus simplifying the task of explaining the data.

This paper presents a Bayesian algorithm for clustering by dynamics. Our algorithm
learns Markov Chain (MC) representations of the dynamics in the time series and then
clusters similar time series to learn prototype dynamics. A MC represents a dynamic process
as a transition probability matrix. For each time series observed on a variable X, we
construct one such matrix. Each row in the matrix represents a state of the variable X, and
the columns represent the probabilities of transition from that state to each other state of
the variable on the next time step. The result is a set of conditional probability distributions,
one for each state of the variable X, that can be learned from a time series. A transition
matrix is learned for each time series in a training batch of time series. Next, a Bayesian
clustering algorithm groups time series that produce similar transition probability matrices.
The task of the clustering algorithm is two-fold: to find the set of clusters that gives the best
partition according to some measure, and to assign each MC to one cluster. A partition is an
assignment of MCs to clusters such that each time series belongs to exactly one cluster. The
algorithm uses the posterior probability of a partition — i.e. the probability of a partition
given the sample time series — as scoring metric and, to increase search efficiency, the
method uses an entropy-based heuristic search strategy.

Bayesian methods for clustering were pioneered by Cheeseman; an overview is in [2].
However, as far as we know, this article presents the first exact Bayesian methods for
clustering dynamic processes by modeling the dynamics via MCs. A Bayesian approach is
particularly well suited to clustering by dynamics because it provides a principled way to
integrate prior and current evidence. Furthermore, because the posterior probability of a
partition is our scoring metric, we avoid the problem of increasing the overall probability
of errors that plagues classical statistical methods [3].

While there are similarities between clustering by dynamics and learning Hidden Markov
Models (HMMs), the former problem is different and somewhat simpler. An HMM has one
probability distribution for the symbols emitted by each state, and also a matrix of proba-
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bilities of transitions between states [11]. In our problem we fit a fully observable Markov
model to each episode and then we search for the partition of these models into clusters that
has maximum probability. Thus our algorithm is more closely related to other approaches
to clustering by dynamics, such as [16, 13], than it is to HMMs. Oates has developed a
powerful method for clustering by dynamics based on Dynamic Time Warping [8]. In this
work, the ”stretch” required to warp one multivariate time series into another is used as
a similarity metric for agglomerative clustering. Because Dynamic Time Warping works
on an entire time series, it is a good metric for comparing the shape of two series. The
algorithimm we discuss in this paper assumes the series are Markov chains, so clustering is
based on the similarity of transition probability matrices, and some information about the
shape of the series is lost. While there are undoubtedly applications where the shape of a
time series is its most important feature, we find that Bayesian clustering of MCs produces
meaningful groupings of time series, even in applications where the Markov assumption is
not known to hold (see Section 5). Our algorithm is also very efficient and accurate, and
it provides a way to include prior information about clusters and a heuristic search for the
maximum likelihood clustering.

The reminder of this paper is organized as follows. We describe the Bayesian clustering
algorithm in Section 2. Section 3 gives details of the algorithm, and an evaluation of
properties of the algorithm on several sets of synthetic data is in Section 4. We apply
the algorithm to two real data sets in Section 5. The goal of the first application is the
identification of dynamics in a military scenario. The second applications creates prototype
dynamics of sensory inputs in a mobile robot.

2. Clustering Markov Chains

Suppose we have a batch of m time series that record the values 1,2, ..., s of a variable X.
The goal is to identify time series that exhibit similar dynamics. Consider, for example,
the plot of three time series in Figure 1. Fach records the values of a variable with five
states — labeled 1 to 5 — in 50 time steps. It is not obvious that the three time series are
observations of the same process. However, when we explore the underlying dynamics of the
three series more closely, we find, for example, that state 2 is frequently followed by state 1,
and state 3 is followed disproportionately often by state 1. We are interested in extracting
these types of similarities among time series. (The problem of finding dependencies between
states in time series has been studied by [10, 9, 6, 7]; the current work is unique in its
approach to clustering time series by the dependency structure that holds among states,
and in particular, its ability to differentiate time series that have different dependency
structures.) To cluster time series by their dynamics, we model the dynamics of time series’
as Markov chains (McCs). For each time series, we estimate a transition matrix from data
and then we cluster transition matrices with similar dynamics.
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Figure 1: Plot of three time series

2.1 Learning Markov Chains

Suppose we observe a time series x = (g, z1, T2, ..., Ti—1, Tj,..), where each z; is one of
the states 1,...,s of a variable X. The process generating the sequence z is a McC if
the conditional probability that the variable visits state j at time ¢, given the sequence
(o, 1,22, ..., Tt—1), is only a function of the state visited at time ¢ — 1 [14]. Hence, we
write p(z¢ = j|(zo,z1, T2, .-y Te—1)) = p(x¢ = j|z1—1) for any z; in z. In other words, the
probability distribution of the variable X at time ¢, say X4, is conditional independent of the
values (xg, 1, %2, ..., Zt—2)), once we know x;_1. This conditional independence assumption
allows us to represent a MC as a vector of probabilities py = (po1, P02, ---, Pos ), denoting the
distribution of Xy (the initial state of the chain) and a matrix P of transition probabilities,
where p;; = p(X; = j|X¢-1 = ).

X
X1 1 2 ‘e 8
1 P11 P12 - DPis
P = (pij) - 2 P21 P22 - Daos
S DPs1 Ps2 - Dss
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Given a time series generated from a MC, we can estimate the probabilities p;; from the
data and store them in the matrix P. The assumption that the generating process is a MC
implies that only pairs of transitions X; | = ¢ — X; = § are informative, where a transition
X; 1 =1 — X; = j occurs when we observe the pair X; | = i, X; = j in the time series.
Hence, the time series can be summarized into an s X s contingency table containing the
frequencies of transitions n;; = n(i — j) where, for simplicity, we denote the transition
Xi—1 =1 — Xy = j by i = j. The frequencies n;; are used to estimate the transition
probabilities p;; characterizing the dynamics of the process that generated the data.

However, the observed transition frequencies n;; may not be the only source of informa-
tion about the process dynamics. We may also have some background knowledge that can
be represented in terms of a hypothetical time series of length e+ 1 in which the « transi-
tions are divided into c;; transitions of type ¢ — j. This background knowledge gives rise to
a s X s contingency table, homologous to the frequency table, containing these hypothetical
transitions c«;; that we call hyper-parameters.

A Bayesian estimation of the probabilities p;; takes into account this prior information by
augmenting the observed frequencies n;; by the hyper-parameters «;; so that the Bayesian
estimate of p;; is

1)

where a; = }_; aj; and n; = 3_; n;. Thus, o; and n; are the numbers of times the variable
X visits state ¢ in a process consisting of « and n transitions, respectively. By writing
Equation 1 as

oo 0 Mg T

Pij = o; o+ ny + n; o + Ny )
we see that p;; is an average of the classical estimate n;;/n; and of the quantity o;;/c,
with weights depending on «; and n;. Rewriting of Equation 1 as 2 shows that «;;/c;
is the estimate of p;; when the data set does not contain transitions from the state 1 —
and hence n;; = 0 for all § — and it is therefore called the prior estimate of p;;, while
Pi; is called the posterior estimate. The variance of the prior estimate o;;/cy; is given by
(05 /o) (1 — o5 /) /(e + 1) and, for fixed oy;/cy;, the variance is a decreasing function
of a;. Since small variance implies a large precision about the estimate, ¢; is called the
local precision about the conditional distribution X¢|X; 1 = ¢ and it indicates the level of
confidence about the prior specification. The quantity o = >, o; is the global precision, as
it accounts for the level of precision of all the s conditional distributions. Further details
may be found in [12].

When n; is large relative to «;, so that the ratio n;/(c; + n;) is approximately 1, the

Bayesian estimate reduces to the classical estimate given by the ratio between the number n;;
of times the transition has been observed and the number n; of times the variable has visited
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1 2 3 4 5 1 2 3 4 5
113 12 3 0 3 11015 055 015 0.01 0.15
N— 2111 1 2 2 0 P 21066 007 013 0.13 0.01
316 0 0 0 1 3107 003 0.03 0.03 0.15
410 0 2 0 O 410.07 007 073 0.07 0.07
510 4 0 0 O 51004 084 0.04 0.04 0.04

Table 1: Observed and learned transition matrices for the first time series in Figure 1.

Figure 2: Markov Chain induced from data.

state 4. In this way, the estimate of the transition probability p;; is approximately 0 when
n;; = 0 and n; is large. The variance of the posterior estimate p;; is p;; (1 —ps5)/ (0 +n;+1)
and, for fixed p;;, it is a decreasing function of «; +n;, the local precision augmented by the
sample size n;. Hence, the quantity «; + n; can be regarded as a measure of the confidence
in the estimates: the larger the sample size, the stronger the confidence in the estimate.

Example 1 Table 1 reports the frequencies of tramsition n;; 4,5 = 1,...,5 observed in
the first time series in Figure 1 and the learned transition matrix when the prior global
precision is & = 5 and «;; = 1/5. The matrix P describes a dynamic process characterized
by transitions among states 1, 2 and 3 while states 4 and 5 are visited rarely. Note that
although the observed frequency table is sparse, as 14 transitions are never observed, null
frequencies of some transitions do not induce null probabilities. The small number of
transitions observed from state 3 (ng = 7), state 4 (ny = 2) and state 5 (ns = 4) do not
rule out, for instance, the possibility of transitions from 3 to either 2, 3 or 4. A summary
of the essential dynamics is in Figure 2 in which double headed paths represent mutual
transitions. Transitions with probability smaller than 0.05 are not represented.
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Figure 3: Graphical representation of a clustering model M,.

2.2 Clustering

The second step of the learning process is an unsupervised agglomerative clustering of MCs
on the basis of their dynamics. The available data is a set S = {S;} of m time series.
The task of the clustering algorithm is two-fold: find the set of clusters that gives the best
partition according to some measure, and assign each MC to one cluster. A partition is an
assignment of MCs to clusters such that each time series belongs to exactly one cluster.

We regard the task of clustering MCs as a Bayesian model selection problem. In this
framework, the model we are looking for is the most probable way of partitioning McCs
according to their similarity, given the data. We use the probability of a partition given the
data — i.e. the posterior probability of the partition — as a scoring metric and we select the
model with maximum posterior probability. Formally, this is done by regarding a partition
as a hidden discrete variable C. Each state Cy of C represents a cluster of time series, and
hence determines a transition matrix. Graphically, the partition of the transition matrices,
that we can learn from S, can be represented as in Figure 3. The directed link from the
node C' and the node containing the MC represents the dependence of the transition matrix
X¢| X;—1 on C. The number c of states of C is unknown, but the number m of available MCs
imposes an upper bound, as ¢ < m. Each partition identifies a model M., and we denote
by p(M.) its prior probability. By Bayes’ Theorem, the posterior probability of M., given
the sample S, is

_ p(Mc)p(S|Mc)

p(§)
The quantity p(S) is the marginal probability of the data. Since we are comparing all the
models over the same data, p(S) is constant and, for the purpose of maximizing p(M,|S),
it is sufficient to consider p(M,)p(S|M.). Furthermore, if all models are a priori equally
likely, the comparison can be based on the marginal likelihood p(S|M.), which is a measure
of how likely the data are if the model M, is true.

p(Mc|S)
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The quantity p(S|M.) can be computed from the marginal distribution (pg) of C and
the conditional distribution (pgi;) of X¢|X;—1 = 4,Cy — Cj is the cluster membership —
using a well-known Bayesian method [4]. Let n;; be the observed frequencies of transitions
i — 7 in cluster Cf, and let ng; = Zj nki; be the number of transitions observed from state ¢
in cluster C. We define my to be the number of time series that are assigned to cluster Cj.
The observed frequencies (ny;;) and (my) are the data required to learn the probabilities
(prij) and (py) respectively and, together with the prior hyper-parameters ay;;, they are all
that is needed to compute the probability p(S|M.), computed as

p(S|Mc) = f(5,C)f (S, Xp-1, X4, C) 3)

Intuitively, the first quantity is the likelihood of the data, if we assume that we can partition
the m MCs into c¢ clusters, and it is computed as

e < Doy +my)
f(S’C)_I‘(a+m)k1;[1 Mlog)

The second quantity measures the likelihood of the data when, conditional on having ¢
clusters, we uniquely assign each time series to a particular cluster. This quantity is given
by

L)

f(S, Xt—l; Xt; H H akz H akl] + nkZ])

kel i1 (ki + nii) j=1 akl])

where T'(-) denotes the Gamma function. Equation 3 is derived directly from the results
in [4] by treating a MC as child variable of C, using the popular terminology of Bayesian
Network. Once created, the transition probability matrix of a cluster C; — obtained by
merging my, time series — can be estimated as pri; = (gij + nkij)/ (ki + Nki)-

We conclude this section by suggesting a choice of the hyper-parameters oz;;. We use
uniform prior distributions for all the transition probability matrices considered at the
beginning of the search process. The initial m X s x s hyper-parameters oy;; are set equal
to a/(ms?) and, when two MCs are similar and the corresponding observed frequencies of
transitions are merged, their hyper-parameters are summed up. Thus, the hyper-parameters
of a cluster corresponding to the merging of m;, initial MCs will be mya/(ms?). In this way,
the specification of the prior hyper-parameters requires only the prior global precision «,
which measures the confidence in the prior model. An analogous procedure can be applied
to the hyper-parameters «y, associated with the prior estimates of pr. We note that, since
I'(z) is defined only for values greater than zero, the hyper-parameters cy;; must be non-
negative. Note further that a choice of uniform hyper-parameters biases the algorithm
toward the hypothesis that the initial m time series are generated from the same McC.
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3. A Heuristic Search

To implement the clustering method described in the previous section, we might search all
possible partitions and return the one with the highest posterior probability. Unfortunately,
the number of possible partitions grows exponentially with the number of MCs so a heuristic
method is required to make the search feasible. We use a measure of similarity between esti-
mated transition probability matrices to guide the search process. The resulting algorithm
is called Bayesian Clustering by Dynamics (BCD).

3.1 The Algorithm

The algorithm performs a bottom-up search by recursively merging the closest MCs (repre-
senting either a cluster or a single time series) and evaluating whether the resulting model
is more probable than the model where these MCs are kept separate. The similarity mea-
sure that guides the process can be any distance between probability distributions. Let P,
and P, be matrices of transition probabilities of two MCs. Because each is a collections
of s probability distributions, and rows with the same index are probability distributions
conditional on the same event, the measure of similarity that BCD uses is an average of the
Kulback-Liebler distance between corresponding rows. Let p1;; and p;; be the probabilities
of the transition ¢ — j in P, and P». The Kullback-Liebler distance of these two probability
distributions is

8
D(p1i,pai) = > prijlog Py (4)

j=1 D2ij
The average distance between P; and P; is then D(P;, P,) = >, D(p1i,p2i)/s. Note that
this distance becomes 0 when P; = P, and it is otherwise greater than zero. The current
implementation of the BCD algorithm is based on Equation 4 but other measures of distance,
such as the mean square error, could be used instead. The rationale behind the distance
measure is that merging more similar MCs earlier should find sooner more probable models
and increase the marginal likelihood 3 used as scoring metric by the algorithm.

Algorithm 1 The algorithm takes as input a set S of m time series and returns a partition
B of times series S.

procedure BCD(S)
MC's+0;Distances+0;
while ¢ < |S| do MCs«MCs|J{mc(S;)};
while i < |[MCs| do
while j < |[MCs| do
if i # j then Distances<Distances| J{DISTANCE(MCs;, MCs;)};
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end
end
Distances«SORT(Distances);
Pey,<ML(MCs); Best«MCs;
while P, > F,q do
PoiaFPrew;
while ¢ < |Distances| do
M C+MERGE(Distances;);
Current«—{MCs\{Distances;}} U{MC};
when P, > ML(Current) do
Best+Current; Ppey+ML(Current);
while j < |Distances| do
if Distances; () Distances; # () then Distances<« Distances\{Distances;};
end
while j < |Best| do
Distances<Distances| ) DISTANCE(M C, Best;);
end
Distances<+SORT(Distances);
return
end
end
end
return Best
end

Initially, the algorithm transforms each of m time series in a set S into a MC. This is
accomplished by the function Mc(-), which follows the procedure described in Section 2.
Then, the algorithm sorts the set Distances of pairwise distances between the m generated
MCs into an acscending order with the function DISTANCE(-,-). This function returns a
pair of MCs indexed by a measure of their mutual distance (which for the current work
is defined in Equation 4). The last step of the initialization phase is the computation of
the the marginal likelihood p(S|M;), where M, represents the model in which each time
series is generated by a different MC, and M, is taken as current best model. The marginal
likelihood 3 is computed by the function ML(-), taking as its argument a set of MCs.

The iterative core of the algorithm loops on the ordered set of MC pairs and tries to
merge the two closest MCs into a single MC. The function MERGE(-) performs this merger
as described in Section 2. This function also estimates the marginal likelihood p(S|M.),
where M, is the model in which the two merged MCs are replaced by the MC resulting
from their merger. If the marginal likelihood of this model is higher than the marginal
likelihood of the current Best model, the model M, is taken as current Best, all the ordered
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pairs involving one of the merged MCs are removed from the set Distances, the distances
between the new MC and the other MCs in the Best model are sorted into the set Distances,
and the procedure is iterated on the new Best model. Otherwise, the procedure tries to
merge the remaining pairs of MCs in the ordered set Distances. If no merging will result in
a model with higher marginal likelihood than the current Best model, the procedure stops
and returns the Best model found so far.

3.2 Computational Complexity

We shall assume that the quantities required to compute Equation 3 in the function ML(-)
and Equation 4 in the function DISTANCE(:,-) have been pre-computed and stored in some
array. We do not consider the time required by the function SORT(-).

Recall that s is the number of states of the variable generating the m time series in
the set S. We assume that the longest time series contains n data points. The execution
of function Mc(-) requires at most ns? applications of Equations 1. Therefore, the first
while statement requires O(mns?) time. The following nested while statements call the
DISTANCE(-,f)unction (m™1) times, in case of symmetric distances, and (m(m — 1)) times
otherwise. As the function DISTANCE(-,-) applies Equation 4 s? times, the cost of this
second while statement is bounded by O(s?m?). The third while statement is called, in
the worse case, m times on the (m(m — 1)) elements of Distances. As the function ML(-)
sums over a table of ms? elements, the cost of the third while statement is bounded by
O(m*s?). When a new model is successfully created, we must also update the current set
of Distances in order to sort the new generated MC into the other elements of the sorted
list Best. As the number of new models is bounded by (m — 1), this updating requires, in
the worse case, an additional m? + s2m?(m — 1) steps. Putting these results together, we
obtain O(nms?) + O(m?2s?) + O(m*s?) + O(m?) + O(m?s?) and we can bound the cost of
the algorithm by O(m*s?).

4. An Experimental Evaluation

This section presents the results of an experiment to evaluate the accuracy of the algorithm
when it is applied to a batch of time series generated from different MCs. The results show
an overall accuracy that appears to suffer only when the time series in the batch are both
very short and have very similar dynamics.

4.1 Procedure

To assess the accuracy of the algorithm, we varied four factors:
Factor 1 The length of each time series: 25, 50, 125 and 250 time steps.

Factor 2 The number of different MCs generating the batch of data: either 4 or 8.

10
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Factor 8 The number of time series generated from each MC: either equal or different.
Factor 4 Global prior precision: a = 4, 8, 80.

The first three factors yield sixteen experimental conditions. In each we generated eighty
time series. Fach time series included at most five distinct values; that is, each was generated
by a MC with five states. We then tested the algorithm with these time series for three values
of the global prior precision a.

The choice of values of Factor 1 follows from the fact that our time series are generate
by McCs with five states. For a given number of states, we require a minimum sample size to
ensure that states are visited often enough to yield good estimates of transition probabilities.
A time series of n+1 steps generated from a MC on s states with uniform probabilities yields
n/s? expected transitions i — j, for any ¢ and j. When the time series is not generated
from a MC with uniform transition probabilities, some observed transition frequencies will
be smaller than n/s?, others will be larger. Hence, if n is not too large relative to s, we
expect to have several null transition frequencies. We decided to fix the number of states
of each MC to five and to generate, from each McC, time series of length 25="“very short”,
50=%short”, 125=“medium” and 250=“long”. Very short and short time series give an
expected number of one and two transitions in the uniform case, so that we expect to have
several zeros when the generating MCs are not uniform. The expected number of transitions
are five and ten in the other two cases.

The time series in an experimental batch are generated by either four or eight MCs. We
constructed the MCs as follows: Each of five rows of a transition matrix is a probability
distribution with masses on five states. When we think of probability distributions, we
imagine symmetric, uniform or skew-symmetric distributions. Uniform distributions aside,
the other patterns are characterized by changing the concentration of probability masses —
without changing the shape of the distributions — to have different degrees of variability.
We might construct an infinite number of transition matrices whose rows mix these different
distributions. To avoid selection bias, we generated a set of sixteen probability distributions
given by a uniform distribution and symmetric and skew-symmetric distributions that are
shown in Figure 4. We then generated eight transition probability matrices P,..., Ps by
sampling, in each case, five distributions from this set.

The Kullback-Liebler distance between pairs of transition probability matrices so gen-
erated ranges between 0.7 — in which the two transition probability matrices have three
identical rows — and 1.95. In the latter case the two transition probability matrices rep-
resent very different dynamics, as in one case the chain is expected to visit all states 1-5
while, in the other case, transitions are mainly limited to states 1 and 4 with the other
states having a very small probability of being visited. For the cases in which we generated
the time series from four McCs, we sampled the four matrices P, Py, Ps and Ps.

We suspected that having generating processes equally represented in the batch of time
series can help the algorithm to cluster MCs correctly. Hence, for each of the eight combi-

11
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Figure 4: Probability distributions generating the transition matrices in the experiment.

nations of length and number of generating MCs, we created two batches of time series in
which the number of time series generated from each MC is either constant or variable. In
the constant conditions, each of four (or eight) MCs generated 20 (or 10) time series. In
the unequal conditions, each of four MCs generates 18, 10, 33 and 19 time series, respec-
tively; and each of eight MCs generated 12, 23, 2, 4, 5, 12, 16, 6, series. (These unequal
distributions were generated randomly.) We also decided to start each simulated time series
from the same initial point. However, since some initial point can be more advantageous
for some time series than others, we choose the common initial point at random. Thus we
generated eighty time series for each of the sixteen combinations of levels of the factors.
We first generated four sets of eighty time series of length 250 time steps, and then we
extracted four sets given by the first 25 steps, four sets given by the first 50 time steps, and
four sets given by the first 125 time steps. In this way, the comparisons of the results for
time series of varying lengths are not confounded with the fact that we observe different
processes, although generated from the same McC.

We then applied the BCD algorithm to the sixteen data sets for three different values of
the global prior precision. Values of & = 4 or 8 give a small adjustment to the observed
frequency, as the initial values of the prior hyper-parameters are ay;; = 0.002 and ay;; =
0.004 and they become at most c;; = 0.16 in the worst case in which the algorithm merges

12



Bayesian Clustering by Dynamics

No of generated time series per MC

Equal Different
Length ‘ 25 50 125 250 25 50 125 250
4mMmcs | 4 4 4 4 4 4 4 4
8Mcs | 8 8 8 8 4 7 7 8

Table 2: Number of clusters created in the sixteen data sets.

the eighty time series into one cluster. We note that, since several transition frequencies are
zeros, small values of ay;; are supposed to affect the precision of the posterior probability.
A choice of a = 80 corresponds to setting cay;; = 0.20 initially and, when the algorithm
begins to assign time series to clusters, these values increase. For instance, when 10 time
series are assigned to the same cluster, the hyper-parameter values rise to 2.

Recall that the task of the clustering algorithm is two-fold: Find the set of clusters that
gives the best partition of time series, and assign the time series to clusters. We evaluate
the algorithm using two performance measures: the number of clusters found in each data
set and the number of time series correctly assigned to clusters. For each cluster C; found
by the algorithm, we find the generating MC with transition matrix F; that has minimum
Kullback-Liebler distance from the transition probability matrix of the cluster. We then
compute the number of time series generated from the MC with transition matrix P; that
are assigned to the cluster C;. The cumulative sum of time series assigned, correctly, to
all clusters is the value of the second performance measure. The first performance measure
ranges between 1, when the algorithm creates only one cluster, and 80, if no time series
are clustered. The correct value is 4 when the time series are generated from 4 MCs and 8
in the other case. The second performance measure ranges between 0, when the algorithm
does not assign correctly any time series, to 80, when all time series are assigned correctly
to their generating MCs.

4.2 Results and Discussion

The number of clusters created by the BCD algorithm in each of the sixteen experimental
conditions is shown in Table 2 (global prior precision is & = 8. The results were not
sensitive to changes of the global prior precision). Table 3 represents the accuracy with
which the algorithm assigns time series to clusters. For conditions in which the batch of
80 time series was generated by four McCs, exactly four clusters were always found, and in
all but one condition, all time series were correctly assigned to their generating McCs. In
one condition, when the time series are only 25 steps long, the algorithm wrongly assigns a
single time series generated from matrix P; to a cluster of series generated from matrix Ps.
(P7 and Ps are the two most similar matrices.) Thus, in the conditions in which we used
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No of generated time series per MC
Equal Different
Length ‘ 25 50 125 250 25 50 125 250
4Mcs |79 80 80 80 80 80 80 80
8Mcs |77 80 80 80 63 76 77 80

Table 3: Number of time series correctly assigned to clusters in the sixteen data sets.

four generating MCs neither the lengths of the time series nor the fact that the generating
MCs are represented unevenly in the data set has any effect.

In those conditions in which eight MCs are used to generate the 80 time series, perfor-
mance is understandably a little less accurate, because fewer time series are available to
represent each MC. Consider first the four conditions in which each MC generates exactly
ten time series. Table 2 shows that, in these cases, the algorithm generated the correct
number of clusters, one for each generating MC. Table 3 shows that in three of these four
conditions, the assignment of time series to clusters was perfect. Only when the time series
were very short was there a problem: One cluster in this condition contains just eight time
series, albeit generated from the same MC; two clusters contain ten time series generated
from the same MC and one series wrongly assigned. One cluster contains nine time series
generated from the same MC and one wrongly assigned. Globally, three time series are
mis-assigned so that the second performance measure is 77.

The results in the last group of conditions, in which we generated an uneven number of
time series from eight MCs is indicative of a possible weaknesses of the BCD algorithm. This
is the only situation in which the algorithm fails to create the correct number of clusters
until the time series are 250 steps long. The assignment of time series to clusters also fails
to be optimal until the time series are long enough. The data set contains eighty time series
generated in numbers 12, 23, 2, 4, 5, 12, 16, 6 from eight MC transition matrices Py, ..., Py.
The algorithm creates 4 clusters when the time series are 25 steps long, 7 clusters when
the time series are either 50 or 125 steps long and identifies the correct number of clusters
when the time series are 250 steps long.

Figure 4 shows the details of the clusters and of the assignment of time series to clusters.
When the sequences are very short, the algorithm merges time series generated from ma-
trices P3, P; and Py in one cluster. Time series generated from P; and P; are also assigned
to one cluster, as are P> and Py. Only the series generated from Py are correctly identified.
Although the amount of information about the generating process is not sufficient to let
the algorithm identify the correct generating McCs, the clusters generated in these conditions
have meaningful features. For instance, the matrices Py and Pg have the smallest Kullback-
Liebler distance of any pair of matrices (0.70), while the matrices P; and Pg have the second
smallest distance (0.76). The matrix P; is frequently represented in the data set, sixteen
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Time Series Length
MC Time Series 25 50 125 250
Py 47-58 ) ) ) °
P 1-12 o+ 46 ° .
Py 42-46 ® 46 ° .
P 13-35 } . . °
P, 38-41 . . .
Py 36-37 .
Py 75-80 } fror pror | .
Py 59-70 ® - 67 ® — 67 o
Total Time Series: 80 80 80 80
Classification Errors: 17 4 3 0

Table 4: Cluster identification and assignments in the experiments. A dot represents a cor-
rect cluster identification. Curly brackets put together time series generated from different
MCs and assigned to one single cluster by the algorithm. A +n denotes that the time series
n is assigned to the wrong cluster, a —n denotes that the times series n is not included in
the right cluster.

time series generated from it, whereas just two and six time series were generated from P
and Pg, respectively. Apparently, the cluster containing the sixteen series generated from
P; absorbs the series generated from Ps and Pg. Similarly, the cluster containing the twelve
time series generated from P, absorbs the five time series generated from P, just as the
cluster containing the twenty-three time series generated from P, absorbs the four series
generated from Ps. We note that the Kullback-Liebler distance D(Py, Py) is greater than
D(Py, Ps), so that the assignment of time series to clusters reflects features of the generating
processes. The only cluster that is correctly identified contains twelve time series generated
from Fs. This matrix is maximally different from the seven other matrices.

As the time series become longer, the algorithm accuracy increases. With time series of
50 steps, the algorithm is able to distinguish series generated from P and Py, as well as P,
and Ps — although series 46 is still assigned to the wrong cluster. Similarly, the time series
generated from Ps, P; and Pg are assigned to two clusters. One of these contains all but
one series generated from Py, and this series is assigned to the cluster merging the series
generated from P; and Pg. This merger is the biggest error committed by the algorithm
when the time series are 50 and 125 steps long. For series of length 250, the accuracy of
the algorithm is 100%.

Clearly the algorithm can be extremely accurate when the batch of data contain roughly
equal numbers of time series generated by different MCs. The fact that series are short does
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not seem to jeopardize accuracy when only four generating MCs are involved. However,
when time series are short and their generating MCs are quite similar, and some of these
MCs contribute many more series to a batch of data than the others, then one cluster may
be formed from time series from the heavily-represented MC as well as a few series from
similar MCs. Our algorithm may not distinguish similar MCs when one contributes many
more time series to a batch of data than another, very similar one, and the series are
short. This potential problem may be exacerbated by the fact that uniform priors bias the
clustering algorithm toward the hypothesis that the time series in a data set are generated
from a common MC. If the sample does not provide enough information to change the prior
knowledge about a model, then the model may not discriminate MCs. However, this danger
is typical of statistical methods applied to small samples.

5. Case Studies

In this section, we describe two applications of Bayesian clustering by dynamics. The first
is a data reduction problem in which time series from a simulator of military engagements
are clustered. The second involves time series generated by the Pioneer 1 mobile robot, and
an effort to have the robot learn to cluster and then classify its experiences.

5.1 Clusters of Military Engagements

In this section we report the result of our algorithm applied to the identification of dynamics
in a military scenario.

5.1.1 The Problem

The domain of our application is a simulated military scenario. For this work, we employ
the Abstract Force Simulator (AFS) [1], which has been under development at the University
of Massachusetts for several years. AFS uses a set of abstract agents called blobs which are
described by a small set of physical features, including mass and velocity. A blob is an
abstract unit; it could be an army, a soldier, a planet, or a political entity. Every blob
has a small set of primitive actions that it can perform, primarily move and apply-force, to
which more advanced actions, such as tactics in the military domain, can be added. AFs
operates by iterating over all the units in a simulation at each clock tick and updates their
properties and locations based on the forces acting on them. The physics of the world
specifies probabilistically the outcomes of unit interactions. By changing the physics of the
simulator, a military domain was created for this work.

The time series that we want to analyze come from a simple 2-on-2 Capture the Flag
scenario. In this scenario, the blue team, Blue 1 and Blue 2, attempt to capture the objective
Red Flag. Defending the objective is the red team, Red 1 and Red 2. The red team must
defend the objective for 125 time steps. If the objective has not been captured by the 125"
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Blob Task
Primary Red 2 | retain
Effort objective Red Flag

Blue 2 | attack

objective Red Flag
Supporting | Red 1 | attack

Effort blob Blue 1

Blue 1 | escort

blob Blue 1

Table 5: The tasks given to each blob in the scenario.

time step, the trial is ended and the red team is awarded a victory. The choice of goals and
the number of blobs on each team provide a simple scenario. Each blob is given a task (or
tactic) to follow and it will attempt to fulfill the task until it is destroyed or the simulation
ends (Table 5). In this domain, retaining requires the blob to maintain a position near
the object of the retain — the Red Flag in this example — and protect it from the enemy
team. When an enemy blob comes within a certain proximity of the object of the retain,
the retaining blob will attack it. Escorting requires the blob to maintain a position close to
the escorted blob and to attack any enemy blob that comes within a certain proximity of
the escorted blob. Attacking requires the blob to engage the object of the attack without
regard to its own state. These tactics remain constant over all trials, but vary in the way
they are carried out based on environmental conditions such as mass, velocity and distance
of friendly and enemy units. To add further variety to the trials, there are three initial mass
values that a blob can be given. With four blobs, there are 81 combinations of these three
mass values. At the end of each trial, one of three ending conditions is true:

A The trial ends in less than 125 time steps and the blue team captures the flag.
B The trials ends in less than 125 time steps and the blue team is destroyed.

C The trial is stopped at the 125 time step and the blue team fails to achieve its goal.

To capture the dynamics of the trials, we chose to define our state space in terms of the
number of units engaged and force ratios. There are three possible engagement states at
each time step. Red has more blobs “free” or unengaged (F1), both blue and red have an
equal number of unengaged blobs (F2), or blue has more unengaged blobs (F3). In each
of these states, either the red team or the blue team has more unengaged mass (FFR+ or
FFR- respectively). In each of the six possible combinations of the above states, either red
or blue has more cumulative mass (CFR+ or CFR- respectively). Altogether there are 12
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State # | State Description Notes
(F1, FFR+, CFR+) | Strong Red
(F1, FFR+, CFR-)
(F1, FFR-, CFR+)
(F1, FFR-, CFR-)
(F2, FFR+, CFR+) | Strong Red
(F2, FFR+, CFR-)
(
(
(
(
(
(

F2, FFR-, CFR+)
F2, FFR-, CFR-) Strong Blue
F3, FFR+, CFR+)
F3, FFR+, CFR-)
F3, FFR-, CFR+)
F3, FFR-, CFR-) Strong Blue

el

== O 00~ ULk WN ~=O

—

Table 6: The state space for Capture the Flag military engagements.

possible world states, as shown in Table 6. The table shows states 0 and 4 to be especially
advantageous for red and states 7 and 11 to be favorable to blue.

5.1.2 Clusters of Dynamics

The 81 time series generated with AFS for the Capture the Flag scenario consist of 42 trials
in which the blue team captures the red flag (end state A), 17 trials in which the blue forces
are defeated (end state B) and 22 which were stopped after 125 time steps (end state C).

We used our BCD algorithm to partition the time series. With a prior global precision oo =
972 — corresponding to the initial assignment c;; = 1/12 in the 81 transition probability
matrices — the algorithm produced eight clusters. Table 7 gives the assignment of time
series to each of these clusters. By analyzing the dynamics represented by each cluster,
it is possible to reconstruct the course of events for each trial. We did this “by hand” to
understand and evaluate the clusters, to see whether the algorithm divides the trials in a
meaningful way. We found that, indeed, the clusters correspond not only to end states A,
B and C, but to different prototypical ways in which the end states were reached.

Clusters C2, C4 and C5 consist entirely of trials in which blue captured the flag or time
expired (end state A and C). While this may at first be seen as the algorithm’s inability
to distinguish between the two events, a large majority (though it is not possible to judge
how many) of the “time-outs” were caused by the blue team’s inability to capitalize on a
favorable circumstance. A good example is a situation in which the red team is eliminated,
but the blue blobs overlap one another in their attempt to reach the flag. This causes them
to slow to a speed at which they were unable to move to the flag before time expires. Only
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Cluster | A | B | C | Total
C1 5 11 13 |9

Cy 2 0 2 4

Cs 710 |0 |7

Cy 14 |0 12 | 26

Cs 1 0 1 2

Cs 8 |16 |4 |28

Cr 2 |0 |0 |2

Cs 3 |0 |0 |3
Total 42 | 17 | 22 | 81

Table 7: Summary of the clusters identified by the BCD algorithm.

a handful of “time-outs” represent an encounter in which the red team held the blue team
away from the flag. Clusters C5, Cy4 and Cy demonstrate that the clustering algorithm
can identify subtleties in the dynamics of trials, as no information about the end state is
provided, implicitly or explicitly, by the world state.

Clusters C; and Cg merge trials of all types. C) is an interesting cluster of drawn out
encounters in which the advantage changes sides, and blobs engage and disengage much
more than in the other clusters. For example, C] is the only cluster in which the MC visits
all states of Table 6, in particular, is the only cluster in which state 8 is visited. By looking
at the transition probabilities, we see that state 8 is more likely to be reached from state
6, and to be followed by state 0. Thus, from a condition of equal free units (F2) we move
to a situation in which blue disengages a unit and has a free unit advantage (F38), which
is immediately followed by a situation in which red has a free units advantage (F1). The
“time-outs” (end state C) in this cluster represent the red team holding off the blue team
until time runs out. Cluster Cg, on the other hand, contains all but one of the trials in
which the red team eliminated all of the blue units (end state B), as well as very similar
trials where the red blobs appear dominant, but the blue team makes a quick move and
grabs the flag. The cluster is characterized by having transitions among states 0, 4 and 10,
with a large probability of staying in state 0 (in which the red forces are dominant) when
reached. The large number of trials in which the blue team wins (especially large when
we realize that C-endings are blue wins but for the fact that overlapping forces move very
slowly) is a result of Blue 1 being tasked to escort Blue 2, a tactic which allows Blue 1 to
adapt its actions to a changing environment more readily than other unit’s tactics, and in
many trials, gives blue a tactical advantage.

Clusters Cs, C7 and Cg merge only time series of end state A, in which the blue team
always captured the flag. Figure 5 displays the MC representing the three clusters (in which
we have removed transitions with very low probability). Each cluster captures a different

19



Bayesian Clustering by Dynamics

@m

CLUSTER 3 CLUSTER 7 CLUSTER 8

Figure 5: Markov Chains representing clusters C3, C7 and Cg.

dynamics of how a blue victory was reached. For example, cluster Cg is characterized by
transitions among states 1, 5, 7 and 11 in which the blue team maintains dominance, and
transitions to states 4 and 8 — in which the red forces are dominant — have a very low
probability. The trials in cluster C visited states 0, 4, and 10 frequently and correspond to
cases in which the blue team won despite a large mass deficit. In these cases, the objective
was achieved by a break away of one of the blue blobs that outruns the red blobs to capture
the flag. Cluster C3 displays transitions among states 0, 1, 4, 5, 6, 10 and 11 and represents
longer, more balanced encounters in which the blue team was able to succeed.

5.1.3 A Comparison with String-Edit Distance

In this section, we compare the clusters obtained with our Bayesian clustering method with
those obtained using String-Edit Distance. String-Edit Distance is a measure of similarity
between two strings that share a common discrete alphabet. We use dynamic programming
to determine the string-edit distance of all pairs of time series generated by the AFS sim-
ulation. The algorithm finds the minimum number of deletions and insertions of elements
from the alphabet necessary to transform one string into another. Since the String-Edit
Distance is a function of the length of each string, the number of deletions and insertions
is normalized by dividing by the average string length of the two strings being compared.
The string-edit distance of a pair of time series serves as a measure of their similarity for
the purposes of agglomerative clustering. At the outset of clustering, each time series is in
a cluster by itself. During successive steps of the clustering algorithin, the two clusters with
the minimum average string-edit distance between their members are joined. The algorithm
halts when joining two clusters would increase the intra-cluster distance by more than the
average distance from the original cluster to the new cluster. String-Edit Distance was
chosen as a good similarity metric because trials with similar dynamics should, in theory,
have similar string — sequence of states — compositions. Trials with similar transitions
between states (corresponding to carrying out certain parts of tactics) should have smaller
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Cluster | A | B | C | Total
C] 18 | 11 | 2 31

cl 1|1 |2 |4

Cj 5|0 |8 |23

c! 5 |5 |4 |14
Ci 2 |0 |6 |8

C; 1 |0 |0 |1
Total 42 | 17 | 22 | 81

Table 8: Summary of the clusters identified by String-Edit distance.

string-edit distances than trials that have different transitions. By normalizing the string
length, the clusters are not explicitly affected by the length of the trials.

Table 8 shows the results. The String-Edit Distance produces 6 clusters, and the as-
signment of time series of end state A, B and C to clusters shows several similarities with
the clusters produced by our algorithm. Cluster C} is a strict subset of cluster Cy, while
cluster Cs is a strict subset of C§ and cluster Cj is a strict subset of string-edit cluster Cj.
String-edit cluster Cj is very closely related to cluster Cg, showing that string-edit distance
also had problems clustering by the very complex dynamics exhibited by time series in this
cluster. Note, however, that while cluster Cg is dominated by series of end state B, cluster
C'4 contains a nearly even number of series of end states A, B and C.

For a more formal comparison of the clusters produced by our algorithm and String-Edit
Distance, we measured the amount of information that the two clustering algorithms lose
with respect to the composition of the original 81 time series into end states A, B and C. Each
cluster — either Cy, or Cj, — carries an amount of information about time series of end states
A, B, C in terms of their proportions. When a cluster contains time series with one end state
only, it is most informative. It is least informative when the proportions of time series with
end states A, B and C are equal (in this case the cluster does not contain any information
to discriminate end states). These proportions, say pag, per and pcg, can be regarded as a
probability distribution over the end states in clusters Cy, and C},. The loss of information
of each cluster is then given by the entropy Hy = —p g logpar + per logpper + per logpay
and the mean entropy H = ), Hy/c — ¢ is the number of clusters — measures the average
loss of information per cluster. We find that the mean entropy of our clustering method is
0.5, versus 0.7 of String-Edit Distance. Since the maximum loss of information is achieved
when the proportions par = pr = pck are equal to 1/3 and Hjy = log(3), the relative
difference of entropy between the two clustering methods is (0.5 — 0.7)/log(3) = —0.19.
Hence, the String-Edit Distance loses 19% information more than the BCD algorithm.
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CLUSTER 1 CLUSTER 2

Figure 6: MC representing the first and the second cluster.

5.2 Clusters of Sensory Inputs

One goal of our robotics work is to enable mobile robots to learn classes of activities without
supervision. For example, our robot has learned clusters of time series of sensor data that
correspond to passing an object and moving toward an object. We present briefly an
example of Bayesian clustering by dynamics of robot sensor data. The main point of this
section, however, is to introduce another evaluation method for Markov chain models and
clusters, which penalizes these abstractions for losing information about time series.

5.2.1 The Robot Platform

The Pioneer 1 robot is a small platform with two drive wheels and a trailing caster, and
a two degree of freedom paddle gripper. Our configuration of the Pioneer 1 has roughly
forty sensors including sonars, gripper sensors, and a primitive vision system. The values
returned by some sensors are derived from others.

During its interaction with the world, the robot records the values of about 40 sensors
every 1/10 of a second. In an extended period of wandering around the laboratory, the
robot will engage in several different activities — moving toward an object, losing sight
of an object, bumping into something — and these activities will have different sensory
signatures to be clustered.

5.2.2 Prototypical Dynamics for the Robot

In an experimental trial lasting about 30 minutes, the robot’s activities were divided into
42 episodes, without human intervention, by the following criterion: An episode ends when
three or more sensors’ values change simultaneously. The data include 11,118 values for
each sensor. Our prior hyper-parameters are computed by uniformly distributing the global
prior precision, where a = 5 and o/ = 42.

Figure 6 depicts the MCs representing the two clusters €'y and C5 learned for the sensor
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vis-a-x, the horizontal location of an object in the visual field. The first cluster captures
the sensor dynamics when the robot is not close to an object. The transitions are limited to
states 3, 4 and 5 that correspond to the range -28, 140. The initial state 1 can be reached
from state 5, which represents the fact that the object appears and disappears from the
visual field. However, since the estimate of the probability of transitions 5 — 1 and 1 — 5
are derived from only two cases observed in all the episodes merged into cluster C, the
confidence in these estimate is very low. The second cluster, on the other hand, represents
the sensor dynamics for an object not far from the robot, since transitions are essentially
limited among the first 4 states. The prior specification does not rule out the possibility
that either state 1 or 5 be reached from state 4. However, in the 12 episodes merged to
create cluster Cs, the transitions 4 — 5 and 4 — 1 were never observed, while state 4 was
reached only once, from state 3.

5.2.3 Evaluating Information Loss in Bayesian Clustering by Dynamics

Clustering by dynamics involves two levels of abstraction. First, the transitions in an episode
are summarized in a transition matrix, or MC; second, episodes are grouped into clusters,
and the McCs for clusters are averages of the constituent episode MCs. Both operations lose
information. The log-score of a transition helps us evaluate these losses [5]. Let s, i; =
— log Prij be the score of the transition ¢ — j observed in an episode e. This score penalizes
an episode MC by assigning large values to observed transitions when the MC assigns them
small probabilities. We sum this score over all transitions in an episode, and sum again over
all episodes, to get a score for the loss incurred by summarizing the time series of episode
transitions into episode MCs. Now, instead of computing losses for episode e based on the
episode MC, we can compute them based on the MC for the cluster to which e belongs. We
let s.xi; = —logPri; be the score assigned to the transition ¢ — j observed in an episode
that belongs to cluster C}. As before, we sum s, ;;; over the transitions within an episode,
and sum again over episodes.

Finally, if episode e belongs to cluster Cy, we can ask how much predictive accuracy
would be lost by using a randomly selected cluster to predict the episode transitions. This
amounts to a test of whether clusters retain any predictive power at all: if not, then a
randomly selected cluster will incur the same losses as cluster Cy, for episode e. The score
Srkij = — logPyi; is given to tramsition ¢ — j observed in episode k but predicted by a
random cluster. Once again, these scores are summed over transitions in an episode and
over episodes. We have now described three cumulative scores, s., s, and s,, which, for
the data described earlier, have values s, = 120.5, s, = 212.2 and s, = 449.5. The loss is
least for episode MCs, intermediate for cluster MCs and highest for randomly-selected cluster
MCs. Apparently, the MC for episode e does a better job of predicting transitions in e than
does the McC for cluster Cy to which e belongs, and both are better than using a randomly
selected cluster MC to make predictions.
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Sign tests can tell us whether s, = 120.5, s, = 212.2 and s, = 449.5 are significantly
different. Let Sski; = Sekij — Sckij be the difference in scores assigned to episode and
cluster MCs for the transition ¢ — j in episode k. Under the null hypothesis that the
episode and cluster MCs make equally lossy predictions, half these differences should have
a positive sign, half negative. In fact, 1567 differences are positive, 9950 are negative.
We can compare cluster predictions with randomly-selected cluster predictions in the same
way; 2799 differences are positive, 4445 are negative, and 3993 are zero. The sampling
distribution for the number of positive differences is binomial and is well approximated by
the normal distribution for this sample size. We find that episode MCs are significantly less
lossy than cluster MCs, which are themselves significantly less lossy than randomly-selected
cluster McCs.

6. Conclusions

The world is dynamic and learning about the world often means learning about dynamics.
Our overriding goal has been to develop algorithms sufficient for a robot to learn about its
activities by clustering time series of activities by their dynamics. This work was described
briefly in Section 5 and in more depth in [15]. Related methods for clustering robot data
by their dynamics are presented in [8]. This paper focused on the description and analysis
of Bayesian clustering by dynamics BCD. The method starts by modeling dynamics as MCs
then applies a Bayesian clustering procedure to merge these MCs. On artificial data, the
algorithm achieves very high accuracy in most conditions. We also applied the algorithm to
the problem of summarizing simulation data. It’s one thing to run dozens of simulations of
military engagements, quite another to offer a concise critique of a military plan. How can
we extract critiques from megabytes of time series data generated by the simulations? One
can see immediately that this problem is not limited to simulations of military engagements.
All simulators produce vast amounts of data in need of summary. Many natural processes
and engineered artifacts similarly generate masses of time series data. BCD reduces data to
a few prototypical time series; for example, it reduces one hundred military engagements to
eight clusters that correspond to different ways to win and lose battles. Explaining half a
dozen clusters is much easier than explaining the original time series. So whether one’s task
is to cluster robot experiences into an ontology of activities, or to reduce data preparatory
to explanation, BCD has a role.

The principal limitation of the BCD algorithm is that it is limited to univariate time
series, whereas the dynamics of many phenomena are played out in several variables; for
example, the Pioneer 1 robot has roughly 40 sensors, many of which contribute information
about activities. We are extending BCD to the multivariate case. A straightforward way
to do it is to form a state space from the power set of state variables. If ¢ variables each
have j states then the number of “superstates” is j%, and the transition matrices contain
(5%)? transitions. The data requirement for good estimates of probabilities in such matrices
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can be prodigious. Instead we are exploring techniques that first find the combinations of
state variable values that actually occur in time series, then clustering on the dynamics of
transitions within this smaller set of superstates.
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