Showing all 9 Publications linked to the ou analyse project

external website icon

OU Analyse

The OU Analyse project is piloting new machine learning based methods for early identification of students who are at risk of failing.

A list of such students is communicated weekly to the module and Student Support teams to help them consider appropriate support. The overall objective is to significantly improve the retention of OU students. This is ‘research-led’ as the project builds on previous experience from the Jisc funded Retain in 2010/2011 and the joint OU-Microsoft Research Cambridge project in 2012/2013.

The work is innovative in that it is applying machine learning techniques to two types of data:...


Publications | Visit External Site for Details Publications | Visit External Site for Details Publications | doi

Hlosta, M. and Zendulka, Z. (2018) Are we meeting a deadline? classification goal achievement in time in the presence of imbalanced data, Knowledge Based Systems, Elsevier

Publications | Visit External Site for Details Publications | Visit External Site for Details Publications | doi

Huptych, M., Hlosta, M., Zdrahal, Z. and Kocvara, J. (2018) Investigating Influence of Demographic Factors on Study Recommenders, Poster at Artificial Intelligence in Education, Springer, Cham

Publications | Visit External Site for Details Publications | Visit External Site for Details Publications | doi

Kuzilek, J., Hlosta, M. and Zdrahal, Z. (2017) Open University Learning Analytics dataset, Scientific Data, 4, Nature Publishing Group

Publications | Visit External Site for Details  

Bart, R., , C., Coughlan, D., Cross, T., Edwards, S., Gaved, C., Herodotou, M., Hlosta, C., Jones, M., Rogaten, J., Ullmann, J. and , T. (2017) Scholarly insight Autumn 2017:a Data wrangler perspective, Scholarly insight Autumn 2017, IET, The Open University

Publications | Visit External Site for Details Publications | Visit External Site for Details Publications | doi

Hlosta, M., Zdrahal, Z. and Zendulka, J. (2017) Ouroboros: Early identification of at-risk students without models based on legacy data, Learning Analytics & Knowledge (LAK 17), ACM

Publications | Visit External Site for Details Publications | Visit External Site for Details  

Herrmannova, D., Hlosta, M., Kuzilek, J. and Zdrahal, Z. (2015) Evaluating Weekly Predictions of At-Risk Students at The Open University: Results and Issues, EDEN 2015, Barcelona, Spain

Publications | Download PDF Publications | Visit External Site for Details  

Kuzilek, J., Hlosta, M., Herrmannova, D., Vaclavek, J., Zdrahal, Z. and Wolff, A. (2015) OU Analyse: Analysing At-Risk Students at The Open University, Learning Analytics and Knowledge (LAK15), Learning Analytics Review, LAK15-1, LACE project

Publications | Download PDF Publications | Visit External Site for Details  

Wolff, A., Zdrahal, Z., Herrmannova, D., Kuzilek, J. and Hlosta, M. (2014) Developing predictive models for early detection of at-risk students on distance learning modules, Workshop: Machine Learning and Learning Analytics at Learning Analytics and Knowledge (LAK), Indianapolis

Publications | Download PDF Publications | Visit External Site for Details  

Hlosta, M., Herrmannova, D., Vachova, L., Kuzilek, J., Zdrahal, Z. and Wolff, A. (2014) Modelling student online behaviour in a virtual learning environment, Workshop: Machine Learning and Learning Analytics at Learning Analytics and Knowledge (LAK), Indianapolis

View By

Other Publications

CONTACT US

Knowledge Media Institute
The Open University
Walton Hall
Milton Keynes
MK7 6AA
United Kingdom

Tel: +44 (0)1908 653800

Fax: +44 (0)1908 653169

Email: KMi Support

COMMENT

If you have any comments, suggestions or general feedback regarding our website, please email us at the address below.

Email: KMi Development Team