Full Seminar Details

Udo Kruschwitz

University of Essex, Department of Computer Science, Wivenhoe Park, Colchester

 Udo Kruschwitz
Towards Adaptive Information Retrieval - Step 1: Collecting Real Data
This event took place on Friday 25 May 2007 at 11:30

One of the most exciting areas of research in search engine technology and information retrieval is the move towards "adaptive" search systems. A particularly promising aspect of this wide field is to move log analysis right in the centre of attention. The challenge is to exploit the user interaction (as recorded in the log files) to make the search system adapt to the users' search behaviour. Instead of looking at the Web in general we are interested in smaller document collections with a more limited range of topics.

We are focusing on a search paradigm where automatically extracted domain knowledge is incorporated in a simple dialogue system in order to assist users in the search process. The challenge is to mine the log files in order to automatically improve the suggestions made by the system, in other words to "adapt" to the users' search behaviour. We are interested in a specific aspect of this search behaviour, namely the selection of query modification terms which provides us with "implicit feedback" from the users and should be sufficient to come up with a model to automatically adjust the domain knowledge without having to rely on other forms of explicit or implicit user feedback.

This whole process requires real data. We have made a start by running a prototype of our own search system that combines a standard search engine with automatically extracted domain knowledge. The system has been running on the University of Essex intranet for nearly a year now and we have collected more than 35,000 queries. The log files we keep collecting are an extremely valuable resource because they are a reflection of real user interests (different to TREC like scenarios which are always somewhat artificial). The data collected so far are a justification for a system that guides a user in the search process: more than 10% of user queries are query modification steps, i.e. the user either replaces the initial query or adds terms to the query to make it more specific. Adding a term happens more often than replacing the query with a completely new one. We also observe that a user is more likely to select one of the suggestions made by our search engine than modifying the query manually.

The talk will focus on our ongoing research and present some analysis of
the log files collected so far.

Watch the webcast replay >>

Jobs

Senior Research Fellow

Knowledge Media Institute (KMi)
£49,772 to £55,998
Based in Milton Keynes
Permanent position

The post is intended to strengthen the Open University’s Knowledge Media Institute (KMi) international research reputation and in particular we are interested in candidates who can pursue a robust and innovative research agenda in one or more of...

CONTACT US

Knowledge Media Institute
The Open University
Walton Hall
Milton Keynes
MK7 6AA
United Kingdom

Tel: +44 (0)1908 653800

Fax: +44 (0)1908 653169

Email: KMi Support

COMMENT

If you have any comments, suggestions or general feedback regarding our website, please email us at the address below.

Email: KMi Development Team