Full Seminar Details

Dr. Deyu Zhou

School of Computer Science and Engineering, Southeast University, China

Dr. Deyu Zhou
Learning Conditional Random Fields from Unaligned Data for Natural Language Understanding
This event took place on Friday 28 October 2011 at 11:30

One of the key tasks in natural language understanding is semantic parsing which maps natural language sentences to complete formal meaning representations. Rule-based approaches are typically domain-specific and often fragile. Statistical approaches are able to accommodate the variations found in real data and hence can in principle be more robust. However, statistical approaches need fully annotated data for training the models. A learning approach to train conditional random fields from unaligned data for natural language understanding is proposed and discussed. The learning approach resembles the expectation maximization algorithm. It has two advantages, one is that only abstract annotations are needed instead of fully word-level annotations, and the other is that the proposed learning framework can be easily extended for training other discriminative models, such as support vector machines, from abstract annotations. The proposed approach has been tested on the DARPA Communicator Data. Experimental results show that it outperforms the hidden vector state (HVS) model, a modified hidden Markov model also trained on abstract annotations.

Watch the webcast replay >>

View all past events

 
Maven of the month logo - Photo of Prof. Ricardo Baeza-Yates

Maven of the Month

We are also inviting top experts in AI and Knowledge Technologies to discuss major socio-technological topics with an audience that comprises both members of the Knowledge Media Institute, as well as the wider staff at The Open University. Differently from our seminar series, these events follow a Q&A format.

Past events

Jobs

Administration Assistant

Knowledge Media Institute (KMi)
£26,642 to £29,659
Based in Milton Keynes
Fixed Term Contract (Part Time)

The Open University is recruiting for a Grade 5 Administration Assistant within the Knowledge Media Institute (KMi), part of the STEM Faculty. This role is essential in providing professional administrative support to the KMi Director, Senior...

CONTACT US

Knowledge Media Institute
The Open University
Walton Hall
Milton Keynes
MK7 6AA
United Kingdom

Tel: +44 (0)1908 653800

Fax: +44 (0)1908 653169

Email: KMi Support

COMMENT

If you have any comments, suggestions or general feedback regarding our website, please email us at the address below.

Email: KMi Development Team