Full Seminar Details
Henry Lieberman
Massachusetts Institute of Technology

This event took place on Friday 10 November 2017 at 14:00
Story understanding systems need to be able to perform commonsense reasoning, specifically regarding characters’ goals and their associated actions. Some efforts have been made to form large-scale commonsense knowledge bases, but integrating that knowledge into story understanding systems remains a challenge. We have implemented the Aspire system, an application of large-scale commonsense knowledge to story understanding. Aspire extends Genesis, a rule-based story understanding system, with tens of thousands of goal-related assertions from the commonsense semantic network ConceptNet. Aspire uses ConceptNet’s knowledge to infer plausible implicit character goals and story causal connections at a scale unprecedented in the space of story understanding. Genesis’s rule-based inference enables precise story analysis, while ConceptNet’s relatively inexact but widely applicable knowledge provides a significant breadth of coverage difficult to achieve solely using rules. Genesis uses Aspire’s inferences to answer questions about stories, and these answers were found to be plausible in a small study. Though we focus on Genesis and ConceptNet, demonstrating the value of supplementing precise reasoning systems with large-scale, scruffy commonsense knowledge is our primary contribution.