Full Seminar Details
Flora Salim
RMIT University
This event took place on Thursday 15 March 2018 at 14:30
Effective and efficient techniques for analyzing spatio-temporal sensor data from the urban enviornment are paramount, particularly in addressing these key growth areas in urbanization: human mobility, transportation, and energy consumption. One main challenge in spatio-temporal analytics of large scale sensor data is to discover meaningful correlations among thousands of sensors. It is important to observe and learn the context from which the data is generated in, particularly when dealing with heterogenous highdimensional data from buildings, cities, and urban areas.
I will firstly introduce our Information-Gain based temporal segmentation techniques that can be used for discovering transitions in human mobility data, extracting temporal features from multiple different sensor data, finding change points in data streams, and summarising temporal patterns. I will also briefly present a recent paper on a Bayesian Non Parametric technique to discover both contexts (eg social contexts, physical activities) and also groups of users that have similar observable contexts (which may indicate that they belong to a social group).
I will then present a new model of spatio-temporal interval data (which are generally found in infrastructure sensor data e.g. parking sensor, WiFi data in shopping malls, etc). Clustering this data is useful for hot-region detection across different times of day. This paper presents a new approach to evaluate clustering methods across spatial, temporal, and data domains, and propose new similarity and balance metrics to evaluate these clusters.
Lastly, I will introduce a couple of domain applications of our research for smarter cities and smarter buildings, including human mobility analysis, intelligent transportation, indoor analytics, and energy consumption prediction.
Maven of the Month
We are also inviting top experts in AI and Knowledge Technologies to discuss major socio-technological topics with an audience that comprises both members of the Knowledge Media Institute, as well as the wider staff at The Open University. Differently from our seminar series, these events follow a Q&A format.