Full Seminar Details

Marcus Voss

Technische Universität

 Marcus Voss
When are household load profiles similar? Comparing distance measures for Smart Meter Data Analytics
This event took place on Monday 22 July 2019 at 11:30


The smart meter roll-out in many countries leads to energy providers, energy value-added service providers, and grid operators having access to increasing amounts of high-resolution load profiles (e.g. 15-minute resolution) compared to only having one measurement per year as before. These load profiles will be analyzed within diverse data mining tasks such as classification, clustering, and forecasting. However, such lowly aggregated high-resolution load profiles are generally quite intermittent and have less structure to be exploited by standard data mining algorithms. If for instance point-wise distances, such as the Euclidean distance, are used to compare household load profiles, they may inflict a double-penalty if a spike has about the correct height, but is shifted slightly in time. To compare household load profiles, a local permutation invariant (LPI) distance measure was introduced as the adjusted p-norm error to assess household short-term load forecasts and forecasting models minimizing it have since been introduced. This talk will first introduce the characteristics of load profiles at low aggregation levels and introduce the LPI distance as well as the related Dynamic Time Warping (DTW) distance popular in the time series literature. It will discuss the problem of finding a sample mean under the DTW and LPI distances, and introduce approximate optimization methods based on subgradient descent. It will then show how the choice of the distance measure (and its sample mean) affect the results within typical data analytics use cases, namely short-term load forecasting, load profile clustering, and classification. A novel distance measure combining properties of the LPI and DTW, the local nearest neighbor alignment (LNNA) distance is introduced and discussed.

Watch the webcast replay >>

View all past events

 
Maven of the month logo - Photo of Prof. Ricardo Baeza-Yates

Maven of the Month

We are also inviting top experts in AI and Knowledge Technologies to discuss major socio-technological topics with an audience that comprises both members of the Knowledge Media Institute, as well as the wider staff at The Open University. Differently from our seminar series, these events follow a Q&A format.

Past events

Jobs

Administration Assistant

Knowledge Media Institute (KMi)
£26,642 to £29,659
Based in Milton Keynes
Fixed Term Contract (Part Time)

The Open University is recruiting for a Grade 5 Administration Assistant within the Knowledge Media Institute (KMi), part of the STEM Faculty. This role is essential in providing professional administrative support to the KMi Director, Senior...

CONTACT US

Knowledge Media Institute
The Open University
Walton Hall
Milton Keynes
MK7 6AA
United Kingdom

Tel: +44 (0)1908 653800

Fax: +44 (0)1908 653169

Email: KMi Support

COMMENT

If you have any comments, suggestions or general feedback regarding our website, please email us at the address below.

Email: KMi Development Team