Tech Report

Event Recognition on News Stories and Semi-Automatic Population of an Ontology

This paper describes a system which recognizes events on news stories. Our system classifies stories and populates a hand-crafted ontology with new instances of classes defined in it. Currently, our system recognizes events which can be classified as belonging to a single category and it also recognizes overlapping events within one article (more than one event is recognized). In each case, the system provides a confidence value associated to the suggested classification. Our system uses Information Extraction and Machine Learning technologies. The system was tested using a corpus of 200 news articles from an archive of electronic news stories describing the academic life of the Knowledge Media (KMi). In particular, these news stories describe events such as a project award, publications, visits, etc.

ID: kmi-04-14

Date: 2004

Author(s): Maria Vargas-Vera, David Celjuska

Resources:
Download PDF

View By

Other Publications

Latest Seminar
Microsoft Research Cambridge

Actions and their Consequences: Implicit Interactions with Machine Learned Knowledge Bases

More Details

CONTACT US

Knowledge Media Institute
The Open University
Walton Hall
Milton Keynes
MK7 6AA
United Kingdom

Tel: +44 (0)1908 653800

Fax: +44 (0)1908 653169

Email: KMi Support

COMMENT

If you have any comments, suggestions or general feedback regarding our website, please email us at the address below.

Email: KMi Development Team