Tech Report

Efficient Parameter Learning in Bayesian Networks from Incomplete Databases

Current methods to learn conditional probabilities from incomplete databases use a common strategy: they complete the database by inferring somehow the missing data from the available information and then learn from the completed database. This paper introduces a new method - called bound and collapse (BC) - which does not follow this strategy. BC starts by bounding the set of estimates consistent with the available information and then collapses the resulting set to a point estimate via a convex combination of the extreme points, with weights depending on the assumed pattern of missing data. Experiments comparing c to the Gibbs Samplings are also provided.

1. Knowledge Media Institute, The Open University.

2. Department of Actuarial Science and Statistics, City University.

ID: kmi-97-03

Date: 1997

Author(s): Marco Ramoni and Paola Sebastiani

Resources:

View By

Other Publications

Latest Seminar
Microsoft Research Cambridge

Actions and their Consequences: Implicit Interactions with Machine Learned Knowledge Bases

More Details

CONTACT US

Knowledge Media Institute
The Open University
Walton Hall
Milton Keynes
MK7 6AA
United Kingdom

Tel: +44 (0)1908 653800

Fax: +44 (0)1908 653169

Email: KMi Support

COMMENT

If you have any comments, suggestions or general feedback regarding our website, please email us at the address below.

Email: KMi Development Team