A B C D E F G H I J K L M N O P Q R S T U V W X Y Z all

decide project full details

external website icon

Champion: Advaith Siddharthan
Professor of Computer Science and Society Email Icon Website Icon RDF Icon

Participant(s):Janice Ansine, Michael Dodd

Timeline:01 Aug 2020 - 31 Jul 2022

Share:

DECIDE

DECIDE - Delivering Enhanced Biodiversity Information with Adaptive Citizen Science and Intelligent Digital Engagements

Biodiversity is under increasing pressure, with consequent impacts on the benefits people gain from nature. This means that it is vital to include biodiversity in our decision-making and for this we need high quality, fine-resolution, spatial biodiversity information. With this information we can better value nature, and this can be done formally through a process called 'natural capital' assessment, such as by government agencies or local economic partnerships. We also need this information to develop better plans for protecting nature, undertaking ecological restoration to develop resilient ecological networks, and make good decisions about infrastructure development (to achieve net biodiversity gain, as is the ambition in Defra's 25 Year Environment Plan). Much of our existing biodiversity information comes from volunteer-collected species records (a process often called 'citizen science'). However, in many cases, people record where and when they want - leading to large spatial unevenness in recording, both at a national scale and at a local scale. The people and organisations who need to use biodiversity information don't simply require more records: they require better information. This requires us to construct good biodiversity models generated from the available data, communicate these models well, and preferentially target effort to add records from times and places that optimally improve the model outputs. This project seeks to achieve all of this by addressing three important questions. Firstly, can we enhance existing biodiversity information through near real-time, fine resolution, species distribution models? Secondly, can we make biodiversity information more accessible and useful to end users through data flows and automated data communication? Thirdly, can we encourage adaptive sampling behaviour in recorders, by using intelligent digital engagements, so that they re-deploy a portion of their effort to optimally improve biodiversity models? Our team is expertly placed to address these questions because we are a multidisciplinary team (environmental, computer, social and data scientists), and we will use a service design approach that actively engages data users (from national to local levels) and biodiversity recorders alongside the research team. In this project we will produce fine-resolution distribution models for about 1000 insect species across the UK (in this study focusing on butterflies, moths and grasshoppers) using earth observation sensor data, and a data lab (an online analysis platform) to automatically update outputs as new data are available. It is important to communicate these results and their uncertainty so, in collaboration, with data end users we will develop interactive and automatically-generated visualisations and text to do this effectively. We will also develop ways of assessing when and where new data will be most valuable in improving the model outputs. This, when combined with constraints (such as land access or people's recording preferences) will be communicated to recorders as bespoke recommendations via a web app. This will be developed for recording butterflies and grasshoppers (a sunny day activity), and recording moths (supported by our provision of portable, low cost light traps). We will engage recorders through established recording projects across the UK, including with partners in London (many people, but relatively few biodiversity data) and North and East Yorkshire (fewer people, and a wide variety of land uses). Throughout this project our work flows will be implemented in an data lab, so they will be flexible for use with any species and indeed could be adapted for any environmental data. The outcome of this project will be a process for enhancing biodiversity information that can be incorporated into existing recording projects and data streams, so that the outputs will be accessible and useful, for the benefit of nature and people.

Funder: NERC

Partners
  • Centre for Ecology and Hydrology
  • University of York
  • University of Warick
  • Butterfly Conservation
  • JNCC
  • Greenspace Information for Greater London
  • Enable Leisure & Culture. National Trust
  • Natural Resources Wales

View By

Research Themes

Latest Seminar
Prof Enrico Motta
KMi, The Open University

Using AI to capture representations of the political discourse in the news

Watch the live webcast

Jobs

Administration Assistant

Knowledge Media Institute (KMi)
£26,642 to £29,659
Based in Milton Keynes
Fixed Term Contract (Part Time)

The Open University is recruiting for a Grade 5 Administration Assistant within the Knowledge Media Institute (KMi), part of the STEM Faculty. This role is essential in providing professional...

CONTACT US

Knowledge Media Institute
The Open University
Walton Hall
Milton Keynes
MK7 6AA
United Kingdom

Tel: +44 (0)1908 653800

Fax: +44 (0)1908 653169

Email: KMi Support

COMMENT

If you have any comments, suggestions or general feedback regarding our website, please email us at the address below.

Email: KMi Development Team